Temporal thermometer disposable cap

Surgery – Diagnostic testing – Temperature detection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06319206

ABSTRACT:

BACKGROUND OF THE INVENTION
In recent years, infrared thermometers have come into wide use for detection of temperature of adults. For core temperature readings, infrared thermometers which are adapted to be inserted into the patient's ear have been very successful. Early infrared thermometers were adapted to extend into the ear canal in order to view the tympanic membrane and provide an uncorrected, direct reading of tympanic temperature which correlates with pulmonary artery temperature. More recently, however, to provide for greater comfort and ease of use, ear thermometers have been designed to provide corrected readings of the generally cooler distal ear canal. Such thermometers measure temperature of distal ear canal tissue and calculate arterial core temperature via heat balance.
It has been previously proposed to provide a sanitary cover or sheath for the probe which is inserted into the ear canal to minimize contamination and spreading of bacteria and viruses between patients. One such disposable speculum is disclosed in U.S. Pat. No. 4,662,360 to O'Hara et al., the contents of which are incorporated herein by reference.
U.S. Pat. No. 4,993,419 to Pompei et al., the contents of which are also incorporated herein by reference, provides an improved sanitary cover in the form of a removable plastic sheet which is stretched over the end of the probe. The sheet is retained on the probe by posts on the sides of the probe over which holes in the sheet are positioned.
To avoid clinical difficulties in using ear thermometers, particularly with neonates, axillary (underarm) infrared thermometers have been introduced. Infrared thermometers designed for axillary temperature measurements are presented in U.S. patent application Ser. Nos. 08/469,484, 08/881,891, and U.S. Pat. No. 5,874,736 to Pompei, the entire teachings of which are incorporated herein by reference. In each of those devices, an infrared detector probe extends from a temperature display housing and may easily slide into the axilla to lightly touch the apex of the axilla and provide an accurate infrared temperature reading in as little as one-half second. The axillary thermometer also relies on the arterial heat balance approach to provide arterial, oral or rectal temperature.
The axillary infrared thermometer has found great utility not only with neonates but as a screening tool in general, and especially for small children where conventional temperature measurements such as a thermometer under the tongue or a rectal thermometer are difficult. These systems also provide disposable sanitary covers for the clinical market which include plastic sheets similar to those disclosed in the '419 Pompei patent. When these thermometers are adapted for household use, concerns for patient cross-contamination associated with clinical temperature detectors are not so significant and therefore disposable covers have not always been employed.
However, for purposes of accuracy of measurement, a thin transparent film is provided over the viewing area of the infrared sensor. Without the film, any evaporation from the moist axillary region results in a temperature reduction at the target surface thereby reducing accuracy in the temperature reading. The film is pressed against the target surface, thus trapping the moisture and preventing evaporation. The thin film quickly equilibrates to the temperature of the target surface for an accurate reading.
SUMMARY OF THE INVENTION
The present invention provides for particularly convenient temperature readings of neonate, child and adult temperatures by detecting the temperature of the forehead directly over the superficial temporal artery.
Because arteries receive blood directly from the heart, they are a good choice for detecting core temperature, but an artery at the extremities of the body, such as those felt as pulse points at the wrist or ankle, are highly subject to vasoconstriction. This means, for example, that when an individual is extremely sick, in shock, or even just cold or nervous, the arteries constrict to reduce the flow of blood to that area as a means of retaining heat, or as in the case of shock, in an effort to redirect the blood to more critical areas of the body. This can result in a large temperature change at the artery which is a local artifact only and not representative of core temperature.
Ruling out those arteries located in the extremities, in attempting to replicate the temperature at the source (the heart), we find, in the temporal artery, an artery as short a distance from the heart as possible, with a high and relatively constant blood flow, and that is readily accessible on all individuals. The heart, the lungs and the brain are vital to our very existence, so the supply of blood is high to these organs and continues as high as possible even through, in the face of grave illness, other areas may shut down to accommodate.
Originating in the heart is the aorta, the main trunk of the arterial system. A direct extension of the aorta is the common carotid artery, a robust artery which runs upward in the neck and divides into the internal and external carotids. But the carotids, even the external carotid, are at best partially embedded, and at worst completely embedded in the skull, and therefore are not accessible at the skin. Extending directly from the carotid is the temporal artery, again an artery dividing internally and externally. We look to the external branch which travels in front of the ear and up into the soft temple area, terminating in a fork directly between the skin and the skull adjoining the eyebrow.
Demonstrably, the temporal artery is very easily accessible; in fact in most individuals, it is usually quite visible. Terminating in a two-prong fork, it easily doubles the assurance of measuring the correct area. Touching it does not present a risk of injury. There are no mucous membranes present, thus eliminating the risk of contaminates such as those found in the mouth and rectum. And, despite lying so close to the skin surface, the temporal artery perfusion, which is the flow of blood per unit volume of tissue, remains relatively constant and so ensures the stability of blood flow required for our measurement.
A temporal artery detector that employs a temperature sensor that is scanned across the forehead is disclosed in U.S. patent application Ser. No. 09/151,482, the contents of which are incorporated herein by reference. Although the cross-contamination problem is still obviated through use of disposable plastic sheets positioned over the sensor, it has been found that the condensation problem associated with moisture from the skin, as described in the '419 Pompei patent, is outweighed by inherent problems associated with the transparent film used to prevent the moisture from condensing adjacent the temperature sensor. This is attributable to at least two factors. First, the forehead region is less prone to moisture perfusion and thus the associated problems are less prevalent. Second, because the detector is dynamically scanned across the forehead, the transparent film may lift from the skin surface which induces inaccuracies in the resulting temperature reading. It is has been found that discarding this film increases the accuracy of the temperature readings.
In accordance with the present invention, a disposable cap for a body temperature detector includes a body having a viewing end and a retaining end. The retaining end includes an inward protrusion that expands over a wider portion of an end of the detector and contracts after the retaining end has passed over the wider portion to snugly secure the cap on the detector. The cap further includes a flange with an aperture therethrough adjacent the viewing end to permit a radiation sensor of the detector to view a target surface. Preferably, the cap is sufficiently large so as to not be insertable into an ear of a human.
The cap is formed from a sheet of material, preferably by thermoforming, from a material such as polypropylene, polyethylene, polystyrene, or other simi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temporal thermometer disposable cap does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temporal thermometer disposable cap, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temporal thermometer disposable cap will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2581970

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.