Temperature sensitive surfaces and methods of making same

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S333000, C428S441000, C428S442000, C428S520000, C428S522000, C428S913000

Reexamination Certificate

active

06447897

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to temperature sensitive surfaces, methods of bonding functional surface materials such as poly(N-isopropylacrylamide)(PNPIPAAm) to substrates and applications in microtechnology and anti-fouling.
BACKGROUND OF THE INVENTION
The ability to control surface properties has, for many years, been an important goal for materials scientists working in a wide variety of areas. Many techniques have been explored to modify surfaces, including plasma treatment, corona discharge, ozone treatment, electron-beam bombardment, and ultraviolet (UV) and X-ray irradiation. Surface properties can be modified by applying a polymer, such as by photopolymerization. See, for example, C. G. Roffey,
Photopolymerization of Surface Coating
, John Wiley and Sons, New York, 1982, Chapter 3. Poly(N-isopropylacrylamide) (PNIPAAm) is an especially interesting and important polymer for controlling surface polymers. This polymer, and related polymers such as copolymers comprising the isopropylacrylamide (IPAAm) monomer, exhibit thermally reversible changes in response to temperature changes. More particularly, in an aqueous system (i.e., in water), increasing the temperature of surfaces modified by PNIPAAm changes the surface from hydrophilic (water-loving) to hydrophobic (water-repellant). The temperature at which the surface changes from hydrophilic to hydrophobic is known as the lower critical solution temperature (LCST). Attachment to various surfaces and properties of surfaces modified with PNIPAAm has been described in numerous references including: T. Yakushiji, et al.,
Langmuir
, 1998, 14, 4657; T. Okano et al.,
J. Controlled Release
1995, 36, 125; and L. Liang et al,
J. Appl. Polym. Sci
., 1999, 72, 1. Grafting PNIPAAm within a capillary tube or sponge has been identified as a potentially intelligent switch and control valve, respectively. See L. Liang, et al.,
Macromolecules
, 1998, 31, 7845; L. Liang et al.,
J. Appl. Polym. Sci
., 2000, 75, 1735.
Despite previous efforts toward developing thermally responsive and reversible surfaces, there remains a need for thermally responsive surfaces that have relatively thin, polymeric surface coatings and yet exhibit desirable properties such as: narrower ranges for the hydrophilic/hydrophobic change, relatively low contact angles at low temperature, high contact angles at high temperature, a large change in contact angles across the LCST, high grafting density and fast property changes in response to temperature changes. There is also a need for new methods of making thermally responsive surfaces that are simpler, less expensive, use fewer materials, and/or result in surfaces having superior properties.
SUMMARY OF THE INVENTION
The present invention provides an article having a thermally sensitive surface in which a thin coating is disposed over a substrate. The thin coating has a thickness of less than 50 nm and comprises the reaction product of IPAAm. This thermally sensitive surface is characterized by a LCST of at least 25° C. and an advancing contact angle of less than 60° at low temperature and greater than 80° at high temperature. The use of the term “low temperature” in this application refers to a temperature above 0° C. but below the LCST, while “high temperature” refers to a temperature below 100° C. but above the LCST. For the present invention, the advancing contact angle is measured according to the technique described herein in the Examples section. The invention can comprise a variety of shapes and conformations; however, the contact angle should be measured on an essentially flat area of the temperature sensitive coating. If the article lacks any essentially flat areas, the contact angle should be measured on a test surface that is flat but otherwise identical to the article in question.
The present invention further provides an article having a thermally sensitive surface in which a cross-linked coating is disposed over a substrate. This coating is the reaction product of a composition that includes IPAAm and a crosslinking agent. The temperature sensitive surface is characterized by an advancing contact angle of less than 20° at low temperature and greater than 80° at high temperature.
The invention also provides methods of forming thermally sensitive surfaces. In one method, a photosensitizer is reacted onto a surface to provide a reactive surface; a composition comprising IPAAm is applied onto the reactive surface; and the composition is photopolymerized to result in a thermally sensitive surface having a thin polymeric coating having a thickness of less than about 50 mn. This thin coating has an advancing contact angle of less than 60° at low temperature and greater than 80° at high temperature.
In another method, a surface modifier is reacted onto a surface to provide a reactive surface; a composition comprising IPAAm and a crosslinking agent is applied onto the reactive surface; and the composition is thermally polymerized to result in a temperature sensitive surface having a crosslinked polymeric coating having an advancing contact angle of less than 20° at low temperature and greater than 80° at high temperature.
The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.


REFERENCES:
patent: 5997961 (1999-12-01), Feng et al.
patent: 6270903 (2001-08-01), Feng et al.
Okano et al., “Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobic surface properties to control activation/inactivation of platelets,”J. Controlled Release36 (1995) 125-133.
Okano et al., “Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces,”Biomaterials16 (1995) 297-303.
Yakushiji et al., “Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces,” Langmuir 1998, 14 4657-4662.
Liang et al., “Reversible Surface Properties of Glass Plate and Capillary Tube Grafted by Photopolymerization of N-Isopropylacrylamide,” Macromolecules 31 (1998) 7845-7850.
Kobayashi et al., “Silane Coupling Agents for Photografting of Vinyl Monomer.” Chem. Lett. (1992) 1321-1324.
Kobayashi et al, J. Appl. Polym. Sci. (1993), 49(3), pp. 417-423.
Miron et al., “A Spectrophotometric Assay for Soluble and Immobilized N-Hydroxysuccinimide Esters,” Analytical Biochem. (1982) 433-435.
Liang et al., “Preparation of Composite-Crosslinked Poly(N-isopropylacrylamide) Gel Layer and Characteristics of Reverse Hydrophilic-Hydrophobic Surface,” J. Appl. Polymer Science 72 (1999) 1-11.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temperature sensitive surfaces and methods of making same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temperature sensitive surfaces and methods of making same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature sensitive surfaces and methods of making same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.