Temperature insensitive resistor in an IC chip

Active solid-state devices (e.g. – transistors – solid-state diode – Integrated circuit structure with electrically isolated... – Passive components in ics

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S537000, C257S538000

Reexamination Certificate

active

06759729

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is in the field of fabrication of semiconductor devices. More specifically, the invention is in the field of fabrication of resistors for integrated circuits.
2. Related Art
The integrated circuit (“IC”) chips in modern electronic devices include circuits, such as mixed signal circuits, RF circuits, and power amplifier circuits, that require accurate and stable voltages to operate properly. For example, a change in reference voltage can cause the bias voltage in a power amplifier circuit to change, which may result in undesirable distortion in an output signal of the power amplifier circuit. To obtain stable voltages, the circuits in an IC chip, in turn, require components, such as resistors, that remain stable under diverse operating conditions. Furthermore, the circuits in an IC chip require voltages that remain stable while the IC chip is operating in varying ambient or junction temperatures. Thus, semiconductor manufacturers are challenged to fabricate resistors that provide stable resistance values under varying temperatures:
In a conventional IC chip, polysilicon (“poly”) resistors are commonly used, and may be fabricated using metal oxide semiconductor (“MOS”) technology. For example, a polysilicon resistor may be fabricated by depositing a polysilicon film on a field oxide region in the IC chip. The polysilicon film may be deposited, for example, using a low-pressure chemical vapor deposition (“LPCVD”) process. The deposited polysilicon film may then be patterned and etched to form a resistor. The resulting poly resistor has a negative temperature coefficient, which means that the resistance of the poly resistor will decrease in value as temperature increases. A poly resistor, for example, may have a temperature coefficient of approximately −300.0 parts per million (“ppm”)/° C.
The temperature coefficient of the poly resistor, and thus the sensitivity of the resistance of the poly resistor to temperature variations, may be reduced by increasing the size of the poly resistor. For example, a poly resistor having a width of 2.0 microns and a length of 10.0 microns may have a temperature coefficient equal to approximately −350.0 ppm/° C. By increasing the width and length, respectively, of the poly resistor to 4.0 microns and 20.0 microns, for example, the temperature coefficient of the poly resistor may be reduced to approximately −200.0 ppm/° C. Although increasing the size of the poly resistor reduces the sensitivity of the poly resistor to temperature variations, it also results in an undesirable consumption of space in the IC chip.
Metal resistors are also utilized by semiconductor manufacturers in IC chips to provide stable resistances and thus, accurate operating voltages, such as reference and bias voltages. Conventional metal resistors typically have a positive temperature coefficient, which causes an increase in resistance as temperature increases. Similar to poly resistors, metal resistors may also be increased in size to reduce their temperature sensitivity. However, as with poly resistors, increasing the size of the metal resistor also results in an undesirable consumption of space in the IC chip.
Thus, there is a need in the art for a resistor that achieves a stable resistance under varying temperature conditions without consuming additional space in an IC chip.
SUMMARY OF THE INVENTION
The present invention is directed to a temperature insensitive resistor in an IC chip. The present invention addresses and resolves the need in the art for a resistor that achieves a stable resistance under varying temperature conditions without consuming additional space in an IC chip.
According to one exemplary embodiment, an integrated circuit chip comprises an oxide region. The oxide region, for example, may be a field oxide region. The integrated circuit chip further comprises a poly resistor having a first terminal and second terminal, where the poly resistor is situated over the oxide region. The poly resistor, for example, may be P-type polycrystalline silicon and may have a temperature coefficient approximately equal to −350.0 ppm/° C.
According to this exemplary embodiment, the integrated circuit chip further comprises a metal resistor having a first terminal and a second terminal, where the metal resistor is situated over the poly resistor, and where the first terminal of the metal resistor is connected to the first terminal of the poly resistor. The metal resistor, for example, may be titanium nitride and may have a temperature coefficient approximately equal to 400.0 ppm/° C. The metal resistor may be situated, for example, in a first metal level of the integrated circuit chip.
According to this exemplary embodiment, the integrated circuit chip may further comprise a first metal segment connected to the second terminal of the metal resistor and a second metal segment connected to the second terminal of the poly resistor. The first and second metal segments may be situated, for example, in a second metal level of the integrated circuit chip. The integrated circuit chip may further comprise an inter-layer dielectric situated between the poly resistor and the metal resistor. Other features and advantages of the present invention will become more readily apparent to those of ordinary skill in the art after reviewing the following detailed description and accompanying drawings.


REFERENCES:
patent: 4620212 (1986-10-01), Ogasawara
patent: 63-80566 (1988-04-01), None
patent: 01-94648 (1989-04-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temperature insensitive resistor in an IC chip does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temperature insensitive resistor in an IC chip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature insensitive resistor in an IC chip will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207760

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.