Electric heating – Heating devices – Combined with container – enclosure – or support for material...
Reexamination Certificate
2000-10-06
2002-05-07
Pelham, Joseph (Department: 3742)
Electric heating
Heating devices
Combined with container, enclosure, or support for material...
C219S394000, C219S395000, C219S399000, C219S428000, C604S114000
Reexamination Certificate
active
06384380
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention pertains to systems for heating medical items. In particular, the present invention pertains to a system for heating and maintaining medical solution containers (e.g., bags or bottles containing saline or intravenous (IV) solutions, antibiotics or other drugs, blood, etc.) or other medical items (e.g., instruments, blankets, etc.) at desired temperatures by providing an even distribution of heat to the medical items placed within the system.
2. Discussion of Related Art
Generally, various items are required to be heated prior to utilization in a medical procedure to prevent thermal shock and injury to a patient. These items typically include intravenous solution, surgical instruments, bottles and blankets. In order to provide the necessary heated items for use in medical procedures, medical personnel may utilize several types of warming systems to heat items toward their operational temperatures. For example, ovens may be disposed within operating rooms to heat items to desired temperatures. Further, U.S. Pat. No. 4,419,568 (Van Overloop) discloses a wet dressings heater having a base with side walls defining a cavity, and an insert connected to the base and defining at least one recess in the cavity for receiving wet dressings. A heater has an electrical heating element in close proximity to the insert recess for heating the wet dressings, while the temperature of the heating element is controlled in a desired temperature range for those wet dressings.
U.S. Pat. No. 4,495,402 (Burdick et al) discloses a warmer for heating wet dressings and other articles disposed within a heating and storage compartment. The articles are arranged within the compartment in stacked relation and disposed on a plate that is supplied with thermal energy from a heater. The plate includes a center aperture whereby a first thermal sensor is disposed in the aperture in contact with a bottommost article. Control circuitry is disposed beneath the plate to control the heater to maintain temperature ofthe bottommost article at a desired level based on the temperatures sensed by the first thermal sensor and a second thermal sensor responsive to heater temperature.
U.S. Pat. No. 5,408,576 (Bishop) discloses an intravenous fluid warmer having a cabinet structure to accommodate a plurality of intravenous fluid bags. A temperature sensor and pad of heating filaments are disposed within the cabinet structure, whereby the temperature sensor enables automatic temperature regulation of the pad of heating filaments to heat the intravenous fluid bags. The heating filaments are covered by a rubber layer to prevent melting of the bags during heating. A temperature indicator disposed on the cabinet structure permits a user to ascertain when a desired temperature is attained, whereby an intravenous fluid bag is removed from the intravenous fluid warmer via an opening defined in a side of the cabinet structure.
U.S. Pat. No. 5,986,239 (Corrigan, III et al.) discloses a conductive warmer for flexible plastic bags. The warmer includes a heat-conducting member of thermally conductive material having a plurality of fins which are parallel and spaced apart to define a plurality of bag-receiving compartments. The fins are connected to a back portion of the heat-conducting member to which a heating element is attached in a heat-exchanging relationship. The heating element conducts heat through the back portion and fins of the heat-conducting member to the bags.
In addition, the related art provides warming systems for other types of items. For example, U.S. Pat. No. 4,605,840 (Koopman) discloses a horizontal holding cabinet for prepared food, wherein the cabinet has a plurality of drawer-containing modules arranged side-by-side to each other. Each module has a heating element and an integral water reservoir and is capable of being independently heated and humidified. The modules each further include a drawer receiving cavity having an open front adapted to receive a drawer frame. The cavity bottom wall is provided with one or more heating elements, whereby the module walls conduct heat to heat the cavity. A temperature thermostat is mounted on the undersurface of the cavity bottom wall to sense cavity temperature and is further connected to a thermostatic controller that controls the heating elements in accordance with a desired temperature.
The warming systems described above suffer from several disadvantages. In particular, ovens typically do not have a high degree of accuracy or control, thereby enabling use of items having temperatures incompatible with a medical procedure and possibly causing injury to a patient. Further, the Burdick et al and Bishop warmers employ heaters that generally contact a particular portion of an article being heated, thereby heating articles in an uneven manner and enabling formation of hot spots. Moreover, the Burdick et al, Bishop, Corrigan, III et al and Van Overloop warming systems heat items simultaneously to only a single desired temperature rendering them incompatible for applications requiring various items to be heated to different temperature ranges. These systems further employ a heating element covering a substantial portion of a conducting member, thereby increasing system costs and power usage. The above described systems typically have heating area dimensions specifically configured to accommodate particular items and, therefore, are limited with respect to the types of items that may be heated by those systems. The Koopman system employs heating elements disposed within a housing cavity and not in direct contact with the surface supporting an item. This typically requires the system to heat the cavity, thereby providing increased heating time for an item to attain a particular temperature. In addition, the above-described warming systems do not provide a selectively configurable structure for partitioning system compartments to facilitate a relatively even heat distribution for additional or varying items placed therein.
The present invention overcomes the aforementioned problems and provides several advantages. For example, the present invention warming system distributes heat evenly to one or more medical items of varying shapes and sizes, thereby ensuring relatively uniform heating of items with enhanced temperature control. Further, since medical items are supported within system compartments on a heating plate, the medical items are not in direct contact with a heater, thereby avoiding creation of “hot spots”. Moreover, the present invention reduces costs by utilizing a single common controller to simultaneously control each heater within system compartments, and provides versatility since each compartment heater may be individually controlled to enable the system to heat medical items contained within different compartments to the same or different desired temperatures. In addition, a warming system rack structure of the present invention provides even heat distribution and enhanced temperature regulation of individual medical items contained within the receptacles. Since most hospital personnel are unaware of the temperature of a particular medical item prior to use, the rack structure provides a fairly high degree of control of that temperature.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to heat a medical item to a desired temperature by uniformly distributing heat about the medical item, thereby avoiding creation of “hot spots” and “cold spots”.
It is another object of the present invention to simultaneously maintain various items at different desired temperatures for use in medical procedures.
Yet another object of the present invention is to simultaneously maintain various items at different desired temperatures for use in medical procedures via a temperature control system including heating compartments individually controlled by a common controller, wherein each heating compartment is maintained at a desired temperature.
Still another object of the pre
Blankenship Calvin
Faries, Jr. Durward I.
Heymann Bruce R.
Medical Solutions, Inc.
Pelham Joseph
LandOfFree
Temperature controlled cabinet system and method for heating... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Temperature controlled cabinet system and method for heating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature controlled cabinet system and method for heating... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2820308