Temperature control of high temperature superconducting thin...

Refrigeration – Gas compression – heat regeneration and expansion – e.g.,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06256999

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the present invention is temperature control systems and, more particularly, systems and methods for effecting temperature control of high temperature superconducting thin film filter sub-systems.
Recently, substantial attention has been devoted to the development of high temperature superconducting radio frequency (RF) filters for use in, for example, cellular telecommunications systems. However, such filters are extremely temperature sensitive. By their very nature, high temperature superconducting (HTSC) materials are temperature dependent. At temperatures above their “transition temperatures,” the materials behave like an insulator, and at temperatures below the transition temperature, the materials become superconducting.
Further, when a HTSC film is fabricated into a RF filter, temperature fluctuations stemming from kinetic inductance of the filter may have a substantial effect upon the operation of the filter and, in particular, upon the center-frequency of the filter. Similarly, fluctuations in temperature may have a substantial impact upon certain non-linear behavior characteristics of HTSC thin film filters. While the non-linear behavior characteristics of a HTSC thin film filter may have a relatively mild effect upon filter operation at temperatures below the transition temperature, the same cannot be said for the kinetic inductance effect. Further, as the temperature of operation of a HTSC thin film filter approaches, for example, the transition temperature of the filter, relatively minor fluctuations in the operating temperature can have very significant effects upon filter operation. Stated somewhat differently, as HTSC thin film filter systems are operated closer and closer to their respective transition temperatures, more and more care must be taken to control the temperature of the operating environment. Thus, it will be appreciated that HTSC thin film filter systems must be maintained at stable operating temperatures if proper operation of the systems is to be maintained. This is particularly so where HTSC filters are to be operated at or near their respective transition temperatures.
Those skilled in the art also will appreciate that increased temperature stability generally is required when more “narrow-band” filters are utilized within a HTSC filter system. The reason for this is that relatively small changes in operating temperatures (e.g., +/−1° K.) may have a substantial impact upon the range of filter operation, particularly if a filter is operated at or near its transition temperature. Indeed, such changes in operating temperature may cause the center frequency of a HTSC filter to vary by as much as 100 MHz.
Now, because maximum advantage may be obtained through the use of HTSC thin film filters when the filters are operated in a narrow-band mode at approximately the transition temperature, those skilled in the art will appreciate that it is highly desirable, if not essential, to maintain very precise control of the operating temperatures of HTSC thin film filter systems.
Those skilled in the art also will appreciate that, when multiple HTSC filters are disposed, for example, within the dewar of a cryocooler, and the cryocooler is mounted, for example, on a telecommunications tower, substantial temperature control issues may arise. Simply put, a tower-mounted cryocooler will need to provide more lift (i.e., more “cold”) on a hot afternoon than would be required on a cold night. Further, as the ambient temperature of the environment within which a HTSC filter system is mounted varies, temperature gradients will result between the system cold source (i.e., the cold finger of the system cryocooler) and the cold stage or location where the HTSC filters are located.
Traditionally, the above-described problems have been solved by (1) operating a HTSC filter at temperatures well below the transition temperature of the filter; (2) controlling the temperature of a HTSC filter by adding heat to a so-called cold plate with some thermal conduction to a cooler; (3) over-designing a HTSC filter system so that required temperature specifications may be met even in the presence of substantial fluctuations in, for example, ambient temperature; (4) making a cold plate or HTSC filter mount very thick so as to reduce temperature gradients across the mount; and/or (5) providing for in-situ tuning of a HTSC filter system.
Those skilled in the art will appreciate that each of the above-described options represents only a partial solution to the HTSC filter temperature control issue, and that each option has inherent disadvantages. For example, option (1) represents a tradeoff between filter temperature stability and cooler size. In short, the use of a larger cooler may provide lower “cold-finger” temperatures and increased lift, but may result in higher power consumption and system heat generation. Option (2) represents a similar tradeoff, but in that instance, the issue that must be addressed is the addition of a new heat load to the system. Finally, those skilled in the art will appreciate that options (3) and (5), while potentially effective, are subject not only to economic limits, but also to performance limits.
In view of the foregoing, it is believed that those of ordinary skill in the art would find an improved temperature control system for use with HTSC thin film filter systems to be quite useful.
SUMMARY OF THE INVENTION
The present invention is directed to an improved temperature control system for HTSC thin film filter systems and to related temperature control methodologies.
In one particularly innovative aspect, the present invention is directed to the use of a multi-stage temperature controller within a HTSC thin film filter system. In one presently preferred embodiment, the multi-stage temperature controller comprises a first temperature control loop, or “inner loop,” and a second temperature control loop, or “outer loop.” The inner loop monitors a cold finger temperature of a cryocooler and provides for efficient and stable control of the cryocooler in response to an internal reference signal or voltage. The outer loop monitors a cold stage temperature (i.e., a temperature within the general vicinity of a HTSC filter), and provides (as an output) the internal reference voltage to the inner loop. Thus, it will be appreciated that a temperature control system in accordance with the present invention has the ability to quickly and efficiently respond to temperature gradients that may exist between a cold stage of a filter system and, for example, the cold finger of an associated cryocooler. As explained above, such gradients may result, for example, from temporal, seasonal and/or weather-induced changes in ambient temperature, and it is quite important that a tower-mounted HTSC filter system have the ability to accommodate such ambient temperature changes.
It also will be appreciated that, by using a multi-staged control system in accordance with the present invention, it is possible to precisely monitor the temperature within the immediate vicinity of one or more HTSC filters or filter stages without sacrificing the stability of any relevant control loop. This, it is believed, represents a significant improvement over conventional HTSC filter temperature control systems.
In other preferred embodiments, a temperature control system in accordance with the present invention may further include a filter loop of the type described in co-pending U.S. patent application Ser. No. 08/369,004, which is entitled “Temperature Controlling Cryogenic Package System” and is incorporated herein by reference. The filter loop may be used to control the current provided to one or more resistors located within the immediate vicinity of the HTSC filters and, therefore, to fine tune the temperatures of the various filters within a system. Such a loop also may be used to adjust with substantial accuracy the center frequency of the filters.
Finally, in still further embodiments, a plurality of HTSC thin film filter package assembl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temperature control of high temperature superconducting thin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temperature control of high temperature superconducting thin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature control of high temperature superconducting thin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2524855

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.