Temperature compensation of ferro-electric liquid crystal displa

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

345 94, G09G 336

Patent

active

058253440

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

Temperature compensation of ferro-electric liquid crystal displays.
This invention relates to the temperature compensation of multiplex addressed ferro-electric liquid crystal displays. Such displays use a tilted chiral smectic C, I, or F liquid crystal material.


DISCUSSION OF PRIOR ART

Liquid crystal devices commonly comprise a thin layer of a liquid crystal material contained between two glass slides. Optically transparent electrodes are formed on the inner surface of both slides. When an electric voltage is applied to these electrodes the resulting electric field changes the molecular alignment of the liquid crystal molecules. The changes in molecular alignment are readily observable and form the basis for many types of liquid crystal display devices.
In one type of ferro electric liquid crystal device, surface stabilised ferro electric liquid crystal devices (SSFLC--N. A. Clark & S. T. Lagerwall, App Phys Lett 36(11) 1980 pp 899-901), the molecules switch between two different alignment directions depending on the polarity of an applied electric field. These devices have a bistability and remain in one of the two switched states until switched to the other switched state. This allows the multiplex addressing of quite large displays.
One common multiplex display has display elements, ie pixels, arranged in an x, y matrix format for the display of e.g., alpha numeric characters. The matrix format is provided by forming the electrodes on one slide as a series of column electrodes, and the electrodes on the other slide as a series of row electrodes. The intersections between each column and row form addressable elements or pixels. Other matrix layout are known, e.g, polar co-ordinate (r-g), and seven bar numeric displays.
There are many different multiplex addressing schemes. A common feature is application of a waveform, called a strobe waveform to each row or line in sequence. Coincidentially with the strobe applied at each row, appropriate one of two waveforms, called data waveforms are applied to all column electrodes for one period of the data waveform, frequently called the line address time. The differences between the different schemes lies in the shape of the strobe and data voltage waveforms.
European Patent Application 0,306,203 describes one multiplex addressing scheme for ferro electric liquid crystal displays. In this application the strobe is a unipolar pulse of alternating polarity, and the two data waveforms are rectangular waves of opposite sign. The strobe pulse width is one half the data waveform period. The combination of the strobe and the appropriate one of the data voltages provides a switching of the liquid crystal material.
GB 2,262,831, WO-A-92/02925, describes another addressing scheme in which a strobe waveform is first a zero for one time slot followed by a dc pulse of length greater than one time slot, eg two time slots or more. Data waveforms are alternating pulses of +/- data voltages Vd of pulse length one time slot. Line address time is twice the time slot length. The effect of this is that there is an overlapping of addressing time between different rows. Extending the time length of the strobe pulse means an overlapping of addressing in successive row electrodes. Such overlapping effectively increases the width of the switching pulse whilst not affecting the other waveforms and thus reduces the total time taken to address a complete display whilst maintaining a good contrast ratio between elements in the two different switched states.
Other addressing schemes are described in GB 2,146,473-A; GB-2,173,336A; GB-2,173,337-A; GB-2,173,629-A; WO 89/05025; Harada et al 1985 S. I. D Digest Paper 8.4 pp 131-134; and Lagerwall et al 1985 IEEE, IDRC pp 213-221; Proc 1988 IEEE, IDRC p 98-101 Fast Addressing for Ferro Electric LC Display Panels, P Maltese et al.
The liquid crystal material may be switched between its two states by two strobe pulses of opposite sign, in conjunction with a data waveform. Alternatively, a blanking pulse may be used to s

REFERENCES:
patent: 4923285 (1990-05-01), Ogino et al.
Patent Abstracts of Japan vol. 12, No. 76 (P-675) 10 Mar. 1988 & JP,A,62215241 (Seiko Instr. & Electronics Ltd.) 21 Sep. 1987.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temperature compensation of ferro-electric liquid crystal displa does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temperature compensation of ferro-electric liquid crystal displa, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature compensation of ferro-electric liquid crystal displa will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-249453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.