Temperature compensated surface-launched acoustic wave sensor

Measuring and testing – Vibration – Resonance – frequency – or amplitude study

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S024060, C073S061490, C310S31300R

Reexamination Certificate

active

06378370

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to surface-launched acoustic wave sensors, such as chemical and biological sensors, and more particularly to increased temperature stability thereof.
2. Description of the Prior Art
As is known in the art, surface-launched acoustic wave devices may be utilized to detect and quantify numerous measurands by means of perturbations induced in the electrical and mechanical properties of the devices by those measurands. Surface-launched acoustic wave devices include several specific classes, such as surface acoustic waves (SAW), surface transverse waves (STW), surface skimming bulk waves (SSBW), pseudo-surface acoustic waves (PSAW), acoustic plate modes (APM), Love waves, Lamb waves, and liquid guided acoustic waves (LGAW). Acoustic waves can be generated and measured using interdigital transducers on the surfaces of piezoelectric substrates, such as quartz, lithium niobate, lithium tantalite, etc., whereby an electric potential is converted into a mechanical strain and vice versa. The specific geometry of the substrate and interdigital transducers and the type and crystallographic orientation of the substrate material determine the spectrum of waves that will be excited and measured. Through careful control of these parameters and the environment in which the device is operated, it is usually possible to realize a device that allows the generation, propagation, and detection of only one class of the surface-launched acoustic waves listed above (e.g. SAW).
Because the velocity of an acoustic wave is sensitive to the mechanical and electrical properties of the medium through which it propagates, surface-launched acoustic wave devices can be used as sensors, as taught, for example, by U.S. Pat. No. 4,312,228 as shown in FIG.
1
. Velocity of the waves can be measured using a delay line oscillator configuration. This configuration consists of (1) an input interdigital transducer which converts an electrical signal into a mechanical wave, (2) a finite distance, denoted the “delay path”, through which the mechanical wave propagates, (3) an output interdigital transducer which converts the mechanical wave back into an electrical signal, and (4) an amplifier which increases the output electrical signal strength and feeds the stronger signal back into the input interdigital transducer. Because of this positive feedback configuration, self-oscillation is sustained at a specific frequency determined primarily by the velocity of the mechanical wave. Therefore, the oscillation frequency can be used as a direct measure of the velocity.
Likewise, an acoustic resonator configuration can be used to measure velocity of the acoustic wave. In this configuration, one or two interdigital transducers are disposed upon a piezoelectric substrate so as to form an acoustic resonant cavity. Using appropriate resonator electronics, an oscillator circuit can be realized, whereby the oscillation frequency thereof can be used as a direct measure of the velocity.
A chemical sensor can be realized by coating the device or (in the case of a delay line) the delay path thereof, with a thin coating which is physically, chemically, biologically, or otherwise sensitive to a target analyte (measurand). Mechanical and electrical perturbations to the thin coating induced by interaction with the target measurand, including changes in surface-bound mass, elasticity, electrical conductivity, and permittivity, alter the acoustic wave velocity and are, therefore, manifested as alterations in the oscillation frequency of the device. Oscillation frequency can then be correlated to concentration or quantity of the target analyte. Hence, a surface-launched acoustic wave sensor is realized.
One of the key limiting factors to the ultimate sensitivity of a surface-launched acoustic wave sensor is noise induced by inevitable temperature fluctuations. Temperature changes induce noise in the sensor's operating frequency for two major reasons. First, the elastic, dielectric, and piezoelectric coefficients of the substrate change with temperature, thereby changing the velocity of the wave and, hence, the oscillation frequency. The magnitude of this effect is called the “temperature coefficient of velocity” (TCV). Second, the substrate grows or shrinks with changing temperature. This changes the distance across which the acoustic wave must propagate, thereby changing the net phase shift through the device. This results in a slight change in resonant frequency to offset the phase shift. The magnitude of this effect is denoted the “thermal expansion coefficient”, &agr;. The overall temperature sensitivity of the oscillation frequency, or “temperature coefficient of frequency” (TCF), is given as:
TCF=TCV−&agr;
  (1)
The larger the magnitude of TCF, the more sensitive the device is to temperature fluctuations. Two strategies are commonly employed to reduce this temperature noise. The first is to minimize TCF by utilizing a substrate for which TCV and &agr; are exactly equal at some temperature and, hence, subtractively cancel in equation 1. For SAW applications rotated Y-cut quartz is a common example of such a substrate. By varying the rotation angle of the cut, one can choose any temperature over a broad range for which the substrate will be stable.
FIG. 2
shows the theoretical variation of normalized oscillation frequency as a function of temperature for 42.75° (also denoted ST cut) and 26° rotated Y-cut quartz. As the figure shows, the oscillation frequency for each of these cuts (and all others in the rotated Y-cut family) demonstrates a parabolic behavior such that frequency increases with increasing temperature up to some “turnover temperature” (the vertex of the parabola), whereby further temperature increases result in a decrease in oscillation frequency. For small temperature variations around the turnover temperature, TCV will balance a in equation 1 above, and frequency fluctuations will be minimized. Again, as shown in the figure, different rotation angles result in different turnover temperatures.
While temperature compensated substrates are used commonly for noise reduction in acoustic wave signal processing applications, where it is desired to maintain a constant frequency at all times, this technique is not as practical for sensor applications. In sensor applications, one typically coats a portion of the acoustically active area of the device with a material that facilitates sensitivity to a target analyte. The very application of this material, however, can dramatically alter the temperature characteristics of the device. For applications where many different film materials are to be used or applications where film parameters such as thickness, viscosity, electrical conductivity, or density may change over time, it is often impractical or impossible to maintain adequate temperature stability.
The second strategy commonly used to reduce temperature noise is the “dual” configuration, where a reference oscillator (channel) is used in tandem with the sensing channel, as taught, for example, in U.S. Pat. No. 5,992,215 as shown in FIG.
3
. The reference channel is located on the same substrate and is designed to be exactly the same as the sensing channel, but without the sensing film (coating). The oscillation frequency of this reference is then subtracted from that of the sensing channel. Temperature fluctuations that affect both channels equally are, therefore, cancelled through subtraction. Ideally, this results in a signal that is dependent only on changes in the sensing film.
However, in reality this is not the case. As described above, the addition of any perturbation to an acoustic device (including a sensing film) can dramatically affect the TCF. Therefore, temperature will not have the same effect on the sensing channel as it does on the reference channel, and the temperature noise will not be cancelled out. In some cases, it can even be made worse. For example,
FIG. 4
shows the theoretical difference in oscillation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Temperature compensated surface-launched acoustic wave sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Temperature compensated surface-launched acoustic wave sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature compensated surface-launched acoustic wave sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.