Surgery – Diagnostic testing – Measuring fluid pressure in body
Reexamination Certificate
1999-12-03
2001-11-20
Nasser, Robert L. (Department: 3736)
Surgery
Diagnostic testing
Measuring fluid pressure in body
Reexamination Certificate
active
06319208
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to sensor devices and sensing systems and, more specifically, to a system capable of in vivo telemonitoring of various properties of urine in the bladder. This monitoring system may be used, for example, in studies relating bladder pressure to urinary tract infections and anomalous bladder muscular behavior. This monitoring system applies to diagnostic and therapy measures for bed wetting syndrome, artificial bladders and sphincters.
2. Description of the Related Art
Catheters and cables are currently utilized in taking urinary tract pressure measurements. For example, U.S. Pat. No. 5,807,278 involves inserting such catheters and cables into such areas as the urethra, rectum and abdomen of the human body, which frequently causes physical discomfort to the patient, as well as restricting the patient's mobility. Accordingly, there exists a need for eliminating such catheters and cables, while simultaneously improving the means for continuously measuring urinary tract pressure, especially for ambulatory subjects in natural environments.
SUMMARY OF THE INVENTION
The invention fulfills the above-described needs and provides for an improved system for measuring urinary tract pressure. In vivo telemetric monitoring of bladder pressure aids in determining bladder events during normal activities, as well as serving as a means for notification of voiding. Further, in vivo telemetric monitoring provides new and improved data for diagnosis and modeling of conditions involving bladder pressure. The invention affords new diagnostic capabilities, such as for the homebound and institutionalized elderly, for children in their natural surroundings, and for animals in a research environment.
Accordingly, there is provided according to the present invention an in vivo telemetric bladder pressure monitoring system comprising a pressure measurement device capable of using magnetic induction telemetry and further capable of being removably insertable into the bladder of an animal, including humans and other mammals. There is also provided according to the invention, as part of the bladder pressure monitoring system, a receiver for receiving pressure data from said pressure measurement device.
In a preferred embodiment, the pressure measurement device can include a self-contained power source; a pressure sensor; at least one offset balance resistor operatively interconnected to said pressure sensor; a differential amplifier operatively interconnected to an output portion of said pressure sensor and further operatively interconnected to a discharge portion of said self-contained power source; a frequency modulator operatively interconnected to an output portion of said amplifier and further operatively interconnected to said discharge portion of said self-contained power source; an induction coil-antenna operatively interconnected to said discharge portion of said self-contained power source; an oscillator operatively interconnected to said modulator, said oscillator further operatively interconnected to said induction coil-antenna, said oscillator further operatively interconnected to said discharge portion of said self-contained power source; and a telemetry circuit operatively interconnected to said pressure sensor, said telemetry circuit further operatively connected to said discharge portion of said self-contained power source, said telemetry circuit further operatively connected to said induction coil-antenna.
In another preferred embodiment, the pressure measurement device can comprise a self-contained power source; a pressure sensor; at least one offset balance resistor operatively interconnected to said pressure sensor, a transconductance amplifier operatively interconnected to an output portion of said pressure sensor, said transconductance amplifier further operatively interconnected to a discharge portion of said self-contained power source; a pulse width modulator operatively interconnected to an output portion of said transconductance amplifier, said pulse width modulator further operatively interconnected to said discharge portion of said self-contained power source; a clock operatively interconnected to said pulse width modulator, said clock further operatively interconnected to said pressure sensor and said transconductance amplifier, said clock further operatively interconnected to said discharge portion of said self-contained power source; and an oscillator operatively interconnected to said pulse width modulator, said oscillator further operatively interconnected to said discharge portion of said self-contained power source.
In another preferred embodiment, the receiver can include a self-contained and/or external power source; at least one antenna-coil operatively interconnected to a discharge portion of said power source; at least one preamplifier operatively interconnected to an output portion of said antenna-coil, said preamplifier further operatively interconnected to said discharge portion of said power source; a signal conditioner operatively interconnected to an output portion of said preamplifier, said signal conditioner further operatively interconnected to said discharge portion of said power source; a detector operatively interconnected to an output portion of said signal conditioner, said detector further operatively interconnected to said discharge portion of said power source; a scaling amplifier operatively interconnected to an output portion of said detector, said scaling amplifier further operatively interconnected to said discharge portion of said power source; and a memory module means for data acquisition and storage, said memory module operatively interconnected to said output portion of said readout circuit.
Another preferred embodiment includes a method for determining urinary tract pressure in an animal comprising the steps of inserting a capsule into said animal's bladder, measuring said urinary tract pressure on said capsule, and removing said capsule from said animal's bladder.
Further objects, features, and advantages of the invention will become apparent from the detailed description that follows.
REFERENCES:
patent: 3937214 (1976-02-01), Hutchins, IV
patent: 4281667 (1981-08-01), Cosman
patent: 5358514 (1994-10-01), Schulman et al.
patent: 6033366 (2000-03-01), Brockway
Abita Joseph L.
Carkhuff Bliss G.
Mostwin Jacek L.
Graf Ernest R.
Krivak Carla Magda
Nasser Robert L.
The Johns Hopkins University
Wingood Pamela
LandOfFree
Telemetric in vivo bladder urine monitor system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Telemetric in vivo bladder urine monitor system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telemetric in vivo bladder urine monitor system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2616508