Telemeter design and data transfer methods for medical...

Surgery – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S301000, C128S903000, C128S904000

Reexamination Certificate

active

06213942

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to digital wireless communications systems of the type which employ portable, battery-powered communications devices, such as remote telemeters worn by ambulatory hospital patients for monitoring purposes. More particularly, the present invention relates to a network architecture, and an associated TDMA (time division multiple access) communications protocol, for facilitating the efficient and reliable exchange of information between portable wireless devices and centralized monitoring stations.
2. Description of the Related Art
Medical telemetry systems that allow the physiologic data of multiple, remotely-located patients to be monitored from a central location are known in the art. These systems typically comprise remote telemeters that remotely collect the physiologic data of respective patients and transmit the data over a wireless link to a centralized monitoring station. This physiologic data may include, for example, real-time electrocardiograph (ECG) waveforms, CO
2
levels, and temperature readings. From the centralized monitoring station, a clinician can visually monitor the physiologic status, in real time, of many different patients. The central station may also run automated monitoring software for alerting the clinician whenever a predetermined physiologic event occurs, such as a cardiac arrythmia condition.
Remote telemeters of medical telemetry systems are generally of two types: instrument remote telemeters and ambulatory remote telemeters. An ambulatory remote telemeter is a portable, battery-powered device which permits the patient to be monitored while the patient is ambulatory. The ambulatory telemeter attaches to the patient by a strap or other attachment device, and receives the patient's physiologic data via ECG leads (and/or other types of sensor leads) which attach to the patient's body. The physiologic data is continuously transmitted to the central monitoring station by the telemeter's RF (radio frequency) transmitter to permit real-time monitoring. (A design of a remote transceiver which may be used in a two-way, ambulatory telemeter is described in the above-referenced provisional application.) Instrument remote telemeters operate in a similar manner, but receive the patient's physiologic data from a bedside monitor (or other instrument) over a hardwired link, such as an RS-232 connection. Instrument remote telemeters that transfer the physiologic data to the central station over a hardwired connection are also common.
SUMMARY
One problem that is commonly encountered in the field of medical telemetry involves signal loss caused by multi-path interference. Multi-path interference is a well-known phenomenon which occurs when a signal takes two or more paths (as the result of signal reflections) from the transmitter to the receiver such that the multi-path components destructively interfere with each other at the receiver's antenna. To reduce the effects of multi-path interference, some telemetry equipment manufactures have included multiple antenna/receiver pairs on each remote telemeter. With this technique, known as spacial diversity, when one of the antennas experiences multi-path fading, the other antenna (and the corresponding receiver) is used to receive the signal. One problem with this method is that it adds to the cost, size and complexity of the remote telemeter. In addition, in at least some implementations, a loss of data may occur when a “switch-over” is performed from one antenna/receiver pair to the other.
Another problem that has been encountered in the field of medical telemetry relates to the ability to monitor a large number of patients over a coverage area that extends to all patient areas of the hospital. A common solution to this problem involves installing a large number of antennas (e.g., 200 or more) throughout the hospital (with different antennas positioned in different patient areas), and interconnecting the antennas using signal combiners to form a single, distributed antenna system. One problem with this “distributed antenna system” approach is that each antenna and its associated preamplifier (or preamplifiers) contributes to the noise floor of the antenna system, and thereby increases the minimum transmit power at which the transmitting components of the system can operate. (The reasons for this noise floor degradation are discussed below.) Consequently, unless the transmission power of the system's transmitters is increased, a practical limitation is imposed on the number of antennas that can be included in the system, and on the coverage area provided by the system.
Although the noise floor degradation problem can potentially be overcome by increasing the transmission power of the telemetry equipment, there are at least two problems associated with increasing the transmit power. The first problem is that under existing Federal Communications Commission (FCC) regulations, medical telemetry equipment is only permitted to operate within certain frequency bands, and must operate within certain prescribed power limits within these bands. Under FCC Part 15.241, for example, which governs the protected VHF (174-216 MHz) medical telemetry band (a band which is generally restricted to VHF television and medical telemetry), telemetry devices are not permitted to transmit at a signal level which exceeds 1500 microvolts/meter at 3 meters. To operate at power levels which exceed this maximum, frequency bands which offer less protection against interference must be used. The second problem is that increasing the transmit power of an ambulatory telemeter will normally produce a corresponding reduction in the telemeter's battery life.
Another problem with distributed antenna systems is that they are typically highly vulnerable to isolated sources of electromagnetic interference (“EMI”). Specifically, because the signals received by all of the antennas are combined using RF signal combiners, a single source of interference (such as a cellular phone or a faulty preamplifier) at or near one of the antennas can introduce an intolerable level of noise into the system, potentially preventing the monitoring of all patients. One consequence of this problem is that antennas generally cannot be positioned near known intermittent sources of EMI such as X-ray machines, CAT (computerized axial tomography) scanners, and fluoroscopy machines, preventing patient monitoring in corresponding diagnostic areas.
In light of these and other problems with existing medical telemetry systems, the present invention seeks to achieve a number of performance-related objectives. One such objective is to provide an architecture in which the coverage area and patient capacity can be increased without degrading the noise floor. This would allow the telemetry system to be expanded in size and capacity without the need to increase the transmit power of the battery-powered remote telemeters, and without the need to operate outside the protected VHF medical telemetry band. A related objective is to provide an architecture which is highly scalable, so that the capacity and coverage area of the system can easily be expanded through time.
Another goal of the invention is to provide extensive protection against signal drop-outs caused by multi-path interference. The present invention seeks to achieve this objective without the need for multiple antennas or receivers on the telemeters, and without the loss or interruption of physiologic data commonly caused by antenna/receiver switch-overs. A related goal is to provide a high degree of protection against isolated sources of EM, and to allow patients to be remotely monitored while near known intermittent sources of interference.
Another goal of the invention is to provide an architecture in which a large number of patients (e.g., 500 to 800 or more) can be monitored using a relatively narrow range of RF frequencies (such as the equivalent of one or two VHF television channels). This would allow the RF com

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Telemeter design and data transfer methods for medical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Telemeter design and data transfer methods for medical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telemeter design and data transfer methods for medical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2500574

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.