Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-08-24
2003-05-27
Tolin, Gerald (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S676000, C454S184000, C455S348000
Reexamination Certificate
active
06570762
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a telecommunications system.
BACKGROUND OF THE INVENTION
In the digital communications, telecommunications and data processing industries, equipment racks are used to house and organize modules, each of which are used to manage incoming and outgoing and telecommunications and digital data as well as computer generated data. Collectively, the equipment racks along with the housed equipment are known as telecommunications systems. Generally, these telecommunications systems are found as a series of adjacent systems warehoused in service facilities. As such, the objective is to compact as much processing or functional capability within as small a space as possible. Ultimately, costs increase as the volume required to house a given amount of data processing functionality increases. Moreover, any increase in the distance required to transmit telecommunications or other data signals will result in a corresponding decrease in the bandwidth available to those signals. In other words, an objective in the telecommunications, digital communications and data processing industries is to secure an ever higher functional density.
Each telecommunications system is made up of a rack outlining a core bay into which a number of data processing modules are supported. While there exists different modules for different functional objectives, each module generally consists of a circuit board encased in a protective housing. The circuit board processes telecommunications data and other digital or computer data. As these circuit boards require power to operate, they ultimately convert some of that energy supplied into heat. However, the circuit boards must be kept within a certain temperature range to operate properly and, as such, an important consideration in telecommunications systems has been the ability to manage heat generated by these circuit boards in operation.
While heat generation in a telecommunications system was always an important factor considered in designing such systems, historically, in general it has tended to be the case, that the limiting factor in regards to functional density has been the ability in compact a desired density of data pressing electronics into a given space as opposed to the management of heat generated by the electronic in question. That is, it has tended to be the case that heat generation as a function of processing capability per unit volume was not historically a functional limiting concern.
Originally, heat generation was managed by simply orienting modules generally in a vertical column such that air heated by the modules could easily rise between modules convecting heat up and away from the telecommunications systems. This decision directed the industry standard that has defined the gross architecture of these systems. As technology has progressed, heat management has had to be facilitated by a forced air system wherein air was directed through vertical columns between vertically oriented modules and away from the telecommunications system.
In recent years, however, there has consistently been a the dramatic increase in functional density in regards to the reduction in space required for an amount of data process capability. At the same time, the power required to operate each module and the consequent heat generated has correspondingly increased in nearly as dramatic a fashion to the point where traditional vertically oriented or end-on-end oriented eletronics modules within a telecommunications systems have been or will soon be unable to realize the advantages of the functional densities now achievable. That is, given the current scale of the racks used, namely on the order of 7 feet in height, it has become difficult to maintain module temperatures within the required range using forced air cooling methods while the modules are vertically oriented along the height of the racks in an end-on-end series of columns. While alternatives have been proposed to better manage heat through such vertical columns of modules, these alternatives suffer significant drawbacks. For example, one alternative proposes the introduction of multiple air or coolant inlets and outlet along the length of the column. Unfortunately, it is very difficult to avoid co-mingling of heated coolant that has convected some heat away from downstream modules with introduced coolant at ambient or chilled temperatures. As such, the introduced coolant must serve the dual purpose of cooling already warmed coolant as well as further upstream modules.
A further alternative in the prior art proposes directing coolant across the service plane or front face of the telecommunications system, cooling the modules and exhausting the heated coolant out of the system through the rear plane of the system. This method of cooling, however, requires exhaust outlets through the backplane or midplane into which the electronics modules are removably secured and through which the electronics modules may receive or transmit data. The inclusion of such exhaust outlets in the backplane or midplane naturally uses up space that might otherwise be used for electronic circuitry or components thereby limiting the functional density of the system as a whole.
Ultimately, functionality for a given module and therefore for telecommunications systems has been or is soon expected to be limited by the ability of network or data processing providers to maintain each module within a required operating temperature range.
Further, vertical orientation of modules has resulted in a need to arrange what has become the industry standard for transporting telecommunications, digital communications or computer generated data into modules, namely, fibre optic cables, in such a way that they must be directed through at least two bend points in order to he routed away from a given telecommunications system to a cable management facility. This was not much of an issue, historically, when the space required for a set of electronic components to process a given amount of data was relatively larger than it is today and, as a result, the relative number of data transports into a module was small. However, with the ever increasing density of electronic functionality within a given volume resulting in the ability to handle ever increasing volumes of data, the number of transports or fibre-optic cables into a given telecommunications system has increased. As such, cable management in the telecommunications system has become cumbersome given the multi-bend routing required to direct cables out of the telecommunications system into a cable management facility.
Also, the bundling found in these prior art vertically oriented systems requires cabling from a given set of modules to be co-bundled in some cases before being transported out of the telecommunications system to a cable management facility. Cable maintenance often involved the tedious process of finding and separating specific cables or even fibres associated with a given modules out a bundle of multiple cable from various modules, all of which often had to be done remotely from the telecommunications system.
Also, telecommunications systems generally include electronics modules that dominate the signal processing in a telecommunications system, and switch modules, used to provide a method of communicating between electronics modules. In the telecommunications industry these electronics modules are known, for many applications, as access modules. As inferred above, traditional vertical electronics module orientation required an interface between the electronics and switch modules which included, for peripheral electronics modules, longer signal transports than needed for electronics modules that happened to line-up adjacent to a given switch module. The peripheral signal transports suffered reduced bandwidths, and, as such, reduced functionality.
The present invention deals with the problems noted above. In short it allows for the main processing modules or electronics modules to be reconnected to deal with these problem. Moreover, in an embodim
Atkinson John C.
Carroll Roger D.
Cross Douglas B.
Korpela Kalvin W.
Nicolici Marko
Nortel Networks Limited
Tolin Gerald
LandOfFree
Telecommunications system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Telecommunications system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telecommunications system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3063242