Telecommunications service delivery

Telecommunications – Radiotelephone system – Zoned or cellular telephone system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S422100, C455S428000

Reexamination Certificate

active

06522883

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to telecommunications apparatus and methods. More particularly, this invention relates to apparatus and methods for transmitting signals (specifically signals with information or a data content) in multiple different formats.
RELATED ART
The formats may simply be alternative technical representations of the same information; for example, different graphics formats. Alternatively, each format may be in a different medium; for example, image, text and audio formats. Further, the formats may represent something of the same information content but using different volumes of data; for example, a text file and a facsimile image made up of the characters of the text represent different formats for the same text information.
In conventional telecommunications, a given user is associated with a given telecommunications terminal (e.g. a conventional telephone, or a computer with a modem, or a facsimile unit). However, more recently, users have become mobile. In addition to mobile telephones (for example digital cellular telephones such as those conforming to the GSM standard) other types of portable terminal include pagers (either tone pagers or message pagers which can receive short textual messages and display them); so called “personal digital assistants” (PDA's) and portable facsimile or computer units adapted to communicate via cellular networks using dedicated modems.
At the same time, the volume of different types of formats within which information can be transmitted is increasing, and new, so called “multi-media” formats, consisting of single sets of information presented in multiple media (such as for example image, text and audio files) are entering use.
The telecommunications channels through which information is delivered comprise channels of varying bandwidth, including optical fibre links; coaxial copper links; conventional subscriber telephone lines; infra-red local area networks; and radio transmission channels. Of these, radio frequency channels are used for mobile communications. However, radio frequency channels generally have available the lowest bandwidth due to demands on the RF spectrum and to the channel conditions within the RF spectrum.
It is becoming increasingly common for large organisations to provide local area networks within a building or group of buildings, at which a number of different terminals of different types are provided. For example, powerful workstations such as Sun (TM) workstations, may be connected on the same network as less powerful personal computers, advanced telephones, and conventional telephones. Depending on the access conditions, different users may have access to a number of different terminals within such a network, each with different capabilities of receiving information in different formats.
Various prior proposals have been made to attempt to meet the needs of mobile users dealing with data in different formats. For example, our earlier application WO 95/30317 (U.S. application Ser. No. 08/732,321 filed Jan. 22, 1997)describes an “agent based” telecommunications system in which the position of a mobile user is tracked and, when he is in a cell which permits only low bandwidth information transfer, the incoming signal is either cached for later retrieval or the link is down graded (e.g. from video to voice).
Similarly, the article “The network with smarts, new agent—based WANs presage the future of connected computing”, Andy Reinhardt, BYTE October 1994, pages 51-64, describes the proposed IBM ‘Intelligent Communications’ service (apparently intended to be marketed in late 1995) which allows a user to set up a routing profile so that when a fax is received for the user it may be converted to text using optical character recognition, and then converted to speech and read into a voice mailbox.
Our earlier application WO 95/15635 (U.S. application Ser. No. 08/652,433 filed Nov. 1, 1996), describes an agent based telecommunications system for use in a multiple services network.
Our earlier application WO 96/25012 (U.S. application Ser. No. 08/875,890, filed Oct. 14, 1997) describes a multimedia telecommunications system employing reconfigurable agents. Aspects of this document are incorporated by reference herein.
Our earlier international application WO 94/28683 (U.S. application Ser. No. 08/233,631 filed Apr. 26, 1994, now U.S. Pat. No. 5,802,502 issued Sep. 1, 1998) includes an embodiment in which, within a single network, parts of the network set up a service by obtaining prices from other parts of the network. Thus, when a user desires to transmit through the network, he polls a first part of the network, and which polls further downstream parts of the network, and so on, each part of the network then transmitting back a price. Whilst this arrangement is suitable in many applications, as networks grow in size the amount of signalling generated within the network may be substantial.
U.S. Pat. No. 5,446,553 (Motorola) discloses a fax messaging system in which, when a user is unavailable, incoming messages are stored for later access.
According to the invention we provide a telecommunications system which routes messages therethrough, in which bidding takes place in two stages; a first stage in which an estimated bid is made prior to derivation of the route, and, if accepted, a second stage in which the route is set up by a further bidding process. This has the advantage of reducing the number of bidding (and therefore signalling) entities at any time whilst maintaining a reasonable response time in setting up the route.
Furthermore, in a preferred embodiment, multiple passes may be employed corresponding to successive layers of a hierarchical organisation of bidding entities, those entities in the middle layers acting as resource suppliers to entities in layers above them and as resource purchasers to entities in layers below them. This enables further increases in the size of the network without vastly increasing the volume of signalling traffic across the network, particularly if (as preferred) the entities in each layer are geographically distributed.
For example, the arrangement adopted may consist of an entity storing data relating to each customer and arranged to decide whether or not to accept a service on behalf of that customer; a number of service offering entities each of which is arranged to offer a service at a price in the first pass; and, for each service offering entity, a number of resource entities each corresponding to an available network resource (such as a signal format converter or a signal path).
In the preferred embodiment the present invention provides a telecommunication system in which, as in some of the above proposals, a user is tracked, and the identity of a terminal which he may at any time be using is stored. Further, the present invention provides, in one aspect, storage of the capabilities (i.e. formats in which signals can be accepted and/or output) of terminal equipment in the vicinity of the user.
Therefore, rather than attempting (unsuccessfully) to deliver a high bandwidth signal to a low bandwidth mobile terminal, the system of the present invention directs the signal to a nearby terminal which can support a better representation of the signal. The nearby terminal may accent and output the signal in its original form, or the network may convert the signal to a different format which can be accepted by the nearby terminal.
Thus, according to this embodiment of the invention, the network supports a number of different signal format conversions, and is able to choose between the different terminals and associated different format capacities in the neighbourhood of a given mobile user.
It may at this point be mentioned that in so-called ‘Computer-Telephony Integration’ (CTI), it has been proposed to group a computer and a telephone on the same desktop together; to note when a particular user logs onto the computer, and to route all that user's telephone calls to the telephone with which the computer shares a desktop, thus effectively

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Telecommunications service delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Telecommunications service delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telecommunications service delivery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3126055

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.