Optical waveguides – With disengagable mechanical connector – Optical fiber to a nonfiber optical device connector
Reexamination Certificate
2001-06-04
2004-11-30
Palmer, Phan T. H. (Department: 2874)
Optical waveguides
With disengagable mechanical connector
Optical fiber to a nonfiber optical device connector
C385S053000
Reexamination Certificate
active
06824312
ABSTRACT:
TECHNICAL FIELD
The present invention is directed to telecommunications chassis and associated modules. More specifically, the present invention is directed to chassis and module structures that facilitate high-density mounting and/or facilitate electrical to optical signal conversion.
BACKGROUND
Chassis for housing telecommunications modules provide a structure for protecting the modules from externalizes while providing heat dissipation for circuitry contained on the modules and while shielding the modules from electromagnetic interference. Furthermore, a chassis may be required to control flame spread should a fire ever be imposed within the chassis. In the case of modules that have fiber optic cable connections, the chassis additionally may be required to accommodate and manage fiber cables connected to one or more modules. These fiber cables must maintain a bend radius of greater than a certain amount to prevent fiber breaks and/or signal attenuation.
As the density of modules within a given chassis volume increases, the functions expected of the chassis generally become more difficult to accomplish. The number of heat generating components increases while the spacing between modules decreases. Additionally, a greater number of data signals pass through the chassis presenting a higher signal vulnerability and likelihood of signal cross-talk. Specifically, when the modules have fiber cable connections, the chassis must manage a greater number of cables, and the likelihood of overbending one or more of the cables increases.
Chassis that can accommodate a high density of modules with the ability to convert electrical signals to optical and optical to electrical are useful in various applications. For example, electrical to optical and optical to electrical conversion are useful in applications where signals arrive in electrical media but must be distributed over distances greater than is possible over a continuous electrical conductor. Signals may only be transferred relatively limited distances on electrical conductors due to attenuation before repeaters must be introduced to reconstruct the signal. However, fiber conductors can carry a signal over distances many times greater than electrical conductors. Therefore, applying an electrical to optical conversion for a signal prior to distribution and then optical to electrical conversion near the destination eliminates the need for the interposed repeater circuits. Also, employing one large diameter fiber optic cable reduces the clutter that would result from the many coaxial cables that would be necessary.
Generally, these conversions must be done for a large number of communications channels, as is the case when providing communications within a high-rise building where the electrical to optical conversion occurs at the ground floor and optical signals are distributed to the various floors of the building. In such an environment, it is generally desirable to minimize the clutter of equipment so module density within a chassis may be relatively high. Furthermore, some applications require conversions for one data rate while other applications require conversions at another data rate. Thus, there is a need for chassis and module structures that facilitate a high density of telecommunications circuits, including those performing electrical to optical and optical to electrical conversions at one or more data rates.
SUMMARY
Embodiments of the present invention provide structures that enable a relatively high density of circuits to be contained on modules housed within a chassis. Embodiments provide module mounting structures and ventilation structures to dissipate heat developed by the circuitry within the chassis, but control the spread of flames should a fire be imposed. Structures for managing cables and preventing overbending are also provided for both chassis and module embodiments. Embodiments also provide modules with circuitry for converting signals from electrical to optical or optical to electrical at multiple data rates.
The present invention may be viewed as a chassis for holding telecommunications cards. The chassis includes first and second horizontal surfaces and vertical sidewalls mounted to the first and second horizontal surfaces. The first horizontal surface has a first ridge positioned substantially perpendicular to a longitudinal axis of the vertical sidewalls, and the first horizontal surface also has a plurality of card slots extending across the first horizontal surface but not across the first ridge. The card slots are substantially parallel to a longitudinal axis of the vertical sidewalls. The second horizontal surface has a first ridge with a plurality of card slots extending across the first ridge of the second horizontal surface that are substantially parallel to the plurality of card slots of the first horizontal surface.
The present invention may be viewed as another chassis for holding telecommunications cards. The chassis includes first and second horizontal surfaces and vertical sidewalls mounted to the first and second horizontal surfaces. The first horizontal surface has a first portion with a plurality of card slots, and the plurality of card slots extend across the first portion to an edge of the first horizontal surface and are substantially parallel to a longitudinal axis of the vertical sidewalls. The first horizontal surface also has a divider slot between adjacent card slots, and the divider slot is substantially parallel to the plurality of card slots of the first horizontal surface but does not extend to the edge of the first horizontal surface.
The present invention may be viewed as a telecommunications module. The module includes a circuit board that has a first edge. A fiber optic cable connector is mounted to the circuit board along the first edge, and the fiber optic cable connector has a cable connection axis forming an angle with the first edge. At least a portion of the fiber optic cable connector extends beyond the first edge. A faceplate is mounted to the circuit board, and the faceplate has a first portion substantially parallel to the first edge, a second portion substantially parallel to the connection axis of the fiber optic cable connector, and a third portion substantially perpendicular to the connection axis of the fiber optic cable connector. Circuitry is included on the circuit board for converting electrical signals to optical signals or optical signals to electrical signals.
The present invention may be viewed as another telecommunications module. The module includes a circuit board containing circuitry for transferring signals, and the circuit board has a first edge. A fiber optic cable connector is mounted to the circuit board along the first edge, and the fiber optic cable connector has a connection axis forming an angle with the first edge. A shell including first and second sidewalls separated by first and second horizontal surfaces and by a first vertical surface is included. The circuit board and the fiber optic cable connector are mounted within the shell between the first and second sidewalls and between the first and second horizontal surfaces, and the first vertical surface has a first portion substantially parallel to the first edge of the circuit board, a second portion substantially parallel to the connection axis of the fiber optic cable connector, and a third portion substantially perpendicular to the connection axis of the fiber optic cable connector. The first and second sidewalls abut the first portion, second portion, and third portion of the first vertical surface. The module also has a connector mounted to the printed circuit board that extends beyond the shell.
The present invention may be viewed as another chassis for holding telecommunications modules. The chassis includes first and second horizontal surfaces and vertical sidewalls mounted to the first and second horizontal surfaces. A first cover surface that is substantially perpendicular to the vertical sidewalls is positioned between the first and second horizontal surfaces, and the fi
Berg, Jr. Robin L.
Czyscon Joseph S.
Husom Todd
Madsen Dale C.
McClellan Brian J.
ADC Telecommunications Inc.
Doan Jennifer
Merchant & Gould P.C.
Palmer Phan T. H.
LandOfFree
Telecommunications chassis and module does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Telecommunications chassis and module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telecommunications chassis and module will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3286757