Telechelics containing ethanolamine or oligoether-ol-amine end g

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

502157, 5253331, 5253332, 5253333, 5253336, 525379, 525385, 526173, 526174, C08F13606, C08F13608, C08F 832

Patent

active

057537771

DESCRIPTION:

BRIEF SUMMARY
Telechelics are polymers whose chain ends contain functional groups, eg, --OH, --SH, --NH2, etc. They can serve as building blocks for reaction polymers such as polyurethanes, polyepoxides, polyesters etc, polymers functionalized at both ends of the chain being particularly significant.
The process involving anionic polymerization of, eg, butadiene or isoprene using, in particular, bifunctional dilithium initiators in hydrocarbons is particularly suitable for the synthesis of diene telechelics. It yields living polymers of narrow molecular weight distribution and having a suitable microstructure, since a large proportion of the dienes is present in 1,4 configuration. Suitable initiators are also known (eg, EP305,909 (1988), EP363,659 (1989) or EP 405,327 (1990 )). The bifunctionally grown living polymers are then converted to the telechelics by a polymer-like reaction with suitable functionalizing agents.
Particularly desirable telechelics are those having terminal primary or secondary hydroxyl groups, which are prepared, in a preferred process (cf, eg, U.S. Pat. No. 3,786,116) by the reaction of the living polymers with epoxides, eg, ethylene oxide or propylene oxide.
During the conversion of the (less polar) Li-organic terminal groups in strongly polar Li alcoholate terminal groups there are formed very stable associates of the chain ends, which leads to a drastic rise in viscosity or, in the case of functionalizations which lead to more than 40-50% of bifunctional species, produces gelation of the reaction mixture as a result of physical cross-linking. Due to the high reaction rate gelation starts almost immediately after the addition of the terminating agent, which prevents uniform mixing thereof. The consequence is an incomplete reaction and loss of quality of the telechelics, possibly also blocking of the stirrer or even damage to parts of the plant. Although it is possible to carry out the termination at low concentrations, such a procedure is uneconomical. There has thus been the need for a process which makes it possible to effect termination with the formation of hydroxyl end groups without these drawbacks.
This is achieved, according to the invention , by causing a living polydiene which is lithium-organically substituted at least one chain end to react first of all with a corresponding aldimine of the general formula II with an epoxide of the general formula III ##STR2## in which R.sup.1, R.sup.2, and R.sup.3 and Ar have the meanings given below. The invention mainly relates to a polydiene or copolydiene which is obtainable by anionic polymerization of a diene using a bifunctional Li initiator followed by polymer-like reaction, and which contains at least one ethanolamine or oligoetherolamine terminal group of the general structure I ##STR3## in which
R.sup.1 denotes alkyl or aryl,
In the first reaction step, which is known per se (R. Koenig, G. Riess, A. Banderet, Europ. Polym. J. 3723 (1967)), preferably aldimines of aromatic amines, eg, of aniline are used, aldimines derived from an aromatic amine and an aromatic aldehyde, eg, benzanilide being more preferred.
The telechelics having secondary aromatic amino groups at the chain end, as formed in the initial reaction stage, are in themselves of minor industrial significance on account of their low reactivity.
Thus no amine number can be measured, eg, when using the usual standard method (reaction with phthalic anhydride, saponification), whilst on the other hand, however, no association, accompanied by gelation of the reaction mixture, is observed.
The chemical addition takes place more slowly than the direct reaction of the dilithium polymer with epoxide, so that adequate time is available for homogeneous thorough mixing of the reactants. Since gelation only occurs at a very high functionalization yield and with considerable time-lag, the reaction is easy to control from a process engineering point of view.
The reaction of the isolated, alkali-free polymer containing secondary aromatic amino groups with ethylene oxide (EO) in homogeneous phas

REFERENCES:
patent: 4822530 (1989-04-01), Bronstert
patent: 4861742 (1989-08-01), Bronstert
patent: 5112920 (1992-05-01), Haag

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Telechelics containing ethanolamine or oligoether-ol-amine end g does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Telechelics containing ethanolamine or oligoether-ol-amine end g, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Telechelics containing ethanolamine or oligoether-ol-amine end g will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1854145

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.