Techniques for maintaining alignment of cut dies during...

Semiconductor device manufacturing: process – Semiconductor substrate dicing – With attachment to temporary support or carrier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S113000, C438S460000

Reexamination Certificate

active

06448156

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to the fabrication of integrated circuits chips. More particularly, the present invention relates to a nesting apparatus that is suitable for supporting a substrate during a dicing process.
2. Background
During the fabrication of integrated circuit chips, multiple integrated circuit chips are often arranged on a single substrate, e.g., wafer or circuit board, which is eventually diced to separate the integrated circuit chips. Although a substrate may be sawed, or diced, to create individual chips at substantially any point during an overall fabrication process, the substrate is typically sawed after ball grid arrays and dies are formed on the substrate.
FIG. 1
a
is a diagrammatic representation of a contact, or ball grid array (BGA) side of a conventional substrate. A substrate
102
includes individual integrated circuit chips
112
, each of which includes a ball grid array
110
of contacts, as will be appreciated by those skilled in the art. In general, the number of integrated circuit chips
112
formed on substrate
102
may vary, depending upon the size of substrate
102
and the size of each integrated circuit chip
112
. Further, the number of balls in each ball grid array
110
may also vary. By way of example, as shown, substrate
102
includes one hundred and forty integrated circuit chips
112
, each of which have a ball grid array with sixteen balls.
Substrate
102
also generally includes locator holes
106
which are used for various fabrication processes including, but not limited to, processes used to apply ball grid arrays
110
on chips
112
and processes used to encapsulate substrate
102
. “Pick-up points”
116
, which are also included on substrate
102
, are arranged to enable cameras to check the overall alignment of substrate
102
, as necessary, during fabrication.
A representation of the non-BGA side of substrate
102
is shown in
FIG. 1
b.
Non-BGA side of substrate
102
may be considered to be the “die-side” of substrate
102
, as non-BGA side typically includes integrated circuit dies
140
. As will be appreciated by those skilled in the art, when substrate
102
is diced to form individual integrated circuit chips
112
, one side of each integrated circuit chip
112
will have ball grid array
110
, while the other side will have integrated circuit dies
140
.
As mentioned above, in order to separate integrated circuit chips from a substrate, the substrate must be diced with a dicing saw or similar device. Typically, a dicing process involves manually placing the substrate, non-BGA side down, on an adhesive surface, e.g., tape. The tape is arranged to hold the individual integrated circuit chips in place, both during and after dicing. Specifically, the tape is used to prevent the individual integrated circuit chips from rotation and translation with respect to one another.
A substrate is cut from the BGA side, i.e., a substrate is cut with the non-BGA side down, since it is difficult for tape to effectively grip and hold the balls in ball grid arrays, either from the bottom surfaces of the balls or from the side surfaces of the balls. In other words, while tape is capable of securely holding a substantially smooth surface such as the dies on a substrate during dicing, the tape is not as effective in securely holding an uneven surface, such as the overall surface of ball grid arrays, during dicing.
Once a substrate is placed on tape with the BGA side up, the tape and the substrate are manually loaded on a vacuum chuck for dicing. In other words, the tape and the substrate are aligned on a vacuum chuck, tape-side down, such that the vacuum from the vacuum chuck effectively “grips” the tape and the board. While the tape and the substrate are held on the vacuum chuck, a dicing saw is used to automatically dice the integrated circuit chips. As will be appreciated by those skilled in the art, the dicing saw dices the substrate to form the integrated circuit chips, substantially without cutting through the tape.
Once the integrated circuit chips are separated, the chips must be removed from the tape. A vacuum is generally not used to remove the chips from the tape, since the chips are often not accurately aligned on the tape. Typically, a person may remove each chip, BGA side up, from the tape, then place each chip, BGA side down, in a holding tray which may be used to transport the chips to a subsequent fabrication process. The use of manual processes, however, is often time-consuming and inaccurate.
Alternatively, in lieu of a manual process, a pick-and-place machine may be used to remove the chips from the tape, and place the chips in holding trays. As was the case with manually removing chips from the tape, the use of pick-and-place machines is often time consuming. By way of example, a pick-and-place machine must line up each chip prior to picking that chip off the tape. In addition, pick-and-place machines are additional pieces of fabrication equipment that are generally separate from dicing machines. Therefore, an overall dicing process is likely to require an additional manual process of transporting the tape and the diced chips to the pick-and-place machine.
The use of tape in dicing processes is often undesirable as the tape may be relatively expensive, and must be disposed of once the dicing process is completed. In addition, adhesives on the tape may remain on a chip after the dicing process, thereby creating residue that may be difficult to remove. When residue is not properly removed from a chip, subsequent fabrication steps, as well as the integrity of the chip, may be compromised. The use of tape also generally requires manual handling, e.g., placing a substrate on tape. As will be appreciated by those skilled in the art, in addition to being both tedious and time consuming, manual processes often increase the likelihood that a substrate may be mishandled or become contaminated.
Hence, what is desired is a method and an apparatus for efficiently and substantially automatically dicing a substrate to form individual integrated circuit chips. In other words, what is desired is a method and an apparatus for securely holding a substrate, without the use of tape, during a dicing process.
SUMMARY OF THE INVENTION
The present invention relates to a nest mechanism which is arranged to support a substrate during a dicing process, and methods for using such a nest mechanism. According to one aspect of the present invention, a nest apparatus supports a substrate, which includes a chip, a first side, and a second side, during a dicing process, includes an alignment mechanism that positions the substrate with respect to the nest apparatus. The nest apparatus also includes a grid arrangement that defines an opening which receives a contact which is included on the second side of the substrate. In one embodiment, the alignment mechanism is an alignment pin that engages the substrate, as for example through an opening in the substrate, to hold the substrate.
In another embodiment, the second side of the substrate includes a ball grid array, wherein the contact is a part of the ball grid array, and the opening accommodates the ball grid array. In still another embodiment, the nest apparatus also includes a holding mechanism which secures the nest apparatus to a dicing apparatus that is used to cut the substrate. In such an embodiment, the holding apparatus may specifically be arranged to effectively secure the nest apparatus to a vacuum chuck associated with the dicing apparatus.
According to another aspect of the present invention, a method for cutting a substrate without using tape to hold the substrate includes retaining the substrate within a nest mechanism that holds the substrate during cutting with a second side of the substrate facing down, or into the nest mechanism. The method also includes positioning the nest mechanism on a vacuum chuck associated with a cutting mechanism that also includes a vacuum chuck and a cutting saw, and engaging the second si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Techniques for maintaining alignment of cut dies during... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Techniques for maintaining alignment of cut dies during..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Techniques for maintaining alignment of cut dies during... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910195

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.