Optical waveguides – With disengagable mechanical connector – Structure surrounding optical fiber-to-fiber connection
Reexamination Certificate
2002-09-13
2004-12-21
Glick, Edward J. (Department: 2882)
Optical waveguides
With disengagable mechanical connector
Structure surrounding optical fiber-to-fiber connection
C385S072000, C385S077000
Reexamination Certificate
active
06832858
ABSTRACT:
BACKGROUND OF THE INVENTION
A fiber optic component such as a fiber optic network cable or a fiber optic transceiver typically includes a fiber optic connector which is designed to connect with a fiber optic connector of another component in order to form a cohesive communications medium for carrying light signals. One type of fiber optic connector includes a ferrule (e.g., a precision-molded ceramic, metal, silicon, or plastic part) which terminates a set of fiber ends (e.g., one end, four ends, eight ends, 12 ends, etc.). The manner in which the ferrule terminates the set of fiber ends typically defines one of several standard fiber optic interface formations (e.g., an MT ferrule which terminates a 1×4 array of fiber ends, a 2×4 array, a 1×12 array, etc.).
Fiber optic connectors typically include alignment structures (e.g., guide pins, alignment sleeves, etc.) that insert into, or engage around, other alignment structures to align fiber optic interfaces, which are defined by the fiber ends and the ferrules of the connectors, and thus form a set of fiber optic connections. Such fiber optic connections are separable fiber optic junctions that allow light energy to pass therethrough.
Fiber optic component manufacturers attempt to improve the reliability of their fiber optic connectors such that fiber optic signals passing through the fiber optic connections tend to be relatively error-free, and well-suited for traveling long distances. In particular, such manufacturers typically contour and clean (e.g., polish) the fiber optic interfaces so that their formed connections provide maximum light energy transfer and minimal light signal distortion.
Some fiber optic component manufacturers provide fiber optic connectors with doors to cover the fiber optic interfaces in order to maximize the ferrule cleanliness, provide eye protection and to further protect it from damage. One conventional fiber optic connector includes a fixed number of ferrule assemblies (e.g., four), and a housing, which defines an internal cavity for holding the ferrule assemblies. The connector further includes (i) a first set of doors which is hinged to the housing and which covers a first opening into the internal cavity, and (ii) a second set of doors which is also hinged to the housing and which covers a second opening on the other side of the internal cavity.
To fully assemble the connector, a technician inserts the terminated ferrule assemblies into the internal cavity defined by the housing through the first set of doors until the ferrule assemblies lock in place within the housing. That is, the ferrule assembly end-faces push the first set of doors open, and then slide into fixed positions within the housing. At this point, the fiber optic interfaces of the ferrule assemblies face the second set of doors, which are closed in the unmated condition to protect against contamination by the environment in which they are operating. Contaminants such as dirt, dust, oil, condensation, etc. are typical forms of interference which could collect within an exposed cavity and degrade optical performance. Additionally, if there are any light signals which are currently active in the system and exiting the fiber optic interfaces, such signals will hit the second set of doors rather than escape the connector and perhaps injure a bystander or technician who is looking directly into the system (e.g., eye damage caused by laser contact with the retina.)
To mate this first connector with another fiber optic connector, the technician moves the ferrule assemblies of the other connector toward the second set of doors of the first connector until the ferrule assemblies of the other connector (i) push the second set of doors open and (ii) are inserted into the internal cavity defined by the housing of the first connector. The technician continues moving the ferrule assemblies of the other connector toward the first connector until the ferrule assemblies of both connectors align (e.g., using alignment pins) and abut. A locking mechanism typically holds the ferrule assemblies together thus maintaining the formed set of fiber optic connections. A fiber optic connector which is similar to that described above is Molex Part No. 86105 which is provided by Molex Inc. of Lisle, Ill.
SUMMARY OF THE INVENTION
Unfortunately, there are deficiencies to the above-described conventional fiber optic connectors, which require the ferrule assemblies of a corresponding connector to push the connector doors open. In such a configuration, it is quite common for ferrule assemblies to become contaminated or sustain damage. It is critical that the end-faces of a fiber optic ferrule remain clean and free of any and all imperfections. By using the ferrule end-face or a corresponding alignment pin to open the door, simply increases the risk and likelihood of both of the above stated concerns.
In addition, alignment pins extending from the ferrule end-faces can bend resulting in misalignment, scratching, scraping, and/or an inability to mate. Furthermore, if the doors being contacted by the ferrules were to inadvertently bind or lock up, the doors could again cause pin or end-face damage.
Moreover, once a fiber optic interface is damaged, cost and time associated with replacing the interface can be significant.
Furthermore, the housing of the above-described conventional fiber optic connector is relatively inflexible and does not lend itself to easy scaling. That is, if the manufacturer desired a fiber optic connector with a different number of ferrule assemblies (e.g., a housing which holds six ferrule assemblies rather than four), the manufacturer is required to re-engineer the housing design to accommodate a different number of doors or differently sized doors, and almost certainly retool all the equipment associated for the new housing.
In contrast to the above-described conventional fiber optic connector which uses ferrule assemblies to push doors open, the invention is directed to fiber optic connecting techniques which use a module that houses one or more fiber optic interfaces, i.e., a set of fiber optic interfaces. (In general, the use of the term “set” within this document is intended to mean “one or more”.) The module includes a shroud, which protects the set of fiber optic interfaces when in one location, and exposes the set of fiber optic interfaces when in another location. The shroud can operate in conjunction with a set of doors, which actuate in response to shroud movement. Such operation alleviates the need for door actuation in response to contact with ferrule assemblies as required by conventional fiber optic connectors thus avoiding the risk of ferrule assembly damage and contact contamination.
Furthermore, the module can be readily combined with other fiber optic connector assemblies within similar modules in a variety of configurations with no additional retooling costs, (e.g., a manufacturer can manufacture a first assembly having four modules, and a second assembly having six modules) by simply using different sized module carriers (e.g., a module housing or frame which is configured to carry the modules) fabricated using insert based tooling.
One embodiment of the invention is directed to a module for housing fiber optic interfaces. The module includes a fiber optic interface holder, which is configured to hold the optics, and a shroud coupled to the optical holder. The shroud is configured to move relative to the optical holder along an axis defined by the optical holder such that, when the optical holder holds the fiber optic interfaces, the shroud (i) protects the fiber optic interfaces when the shroud is in a first location along the axis defined by the optical holder, and (ii) exposes the fiber optic interfaces when the shroud is in a second location along the axis defined by the optical holder. In one arrangement, the shroud operates with a set of doors, which actuate in response to movement of the shroud along the axis. Such operation alleviates the need for door actuation in response to contact with ferru
George Joe J.
Howard William E.
Kiani Sepehr
Roth Richard F.
Artman Thomas R
Chapin & Huang LLC
Glick Edward J.
Huang, Esq. David E.
Teradyne, Inc.
LandOfFree
Techniques for forming fiber optic connections in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Techniques for forming fiber optic connections in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Techniques for forming fiber optic connections in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3315234