Semiconductor device manufacturing: process – Making device or circuit emissive of nonelectrical signal – Compound semiconductor
Reexamination Certificate
2006-06-01
2010-12-07
Smith, Matthew (Department: 2823)
Semiconductor device manufacturing: process
Making device or circuit emissive of nonelectrical signal
Compound semiconductor
C438S047000, C257SE33002, C257SE33013
Reexamination Certificate
active
07846757
ABSTRACT:
A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
REFERENCES:
patent: 6153010 (2000-11-01), Kiyoku et al.
patent: 6218280 (2001-04-01), Kryliouk et al.
patent: 6316785 (2001-11-01), Nunoue et al.
patent: 6599362 (2003-07-01), Ashby et al.
patent: 6847057 (2005-01-01), Gardner et al.
patent: 7091514 (2006-08-01), Craven et al.
patent: 7186302 (2007-03-01), Chakraborty et al.
patent: 7575947 (2009-08-01), Iza et al.
patent: 7687293 (2010-03-01), Sato et al.
patent: 7691658 (2010-04-01), Kaeding et al.
patent: 7723216 (2010-05-01), Chakraborty et al.
patent: 2002/0144645 (2002-10-01), Kim et al.
patent: 2003/0024475 (2003-02-01), Anderson
patent: 2005/0142391 (2005-06-01), Dmitriev et al.
patent: 2005/0161697 (2005-07-01), Nakahata et al.
patent: 2005/0258451 (2005-11-01), Saxler et al.
patent: 2007/0015345 (2007-01-01), Baker et al.
patent: 2007/0252164 (2007-11-01), Zhong et al.
patent: 2008/0163814 (2008-07-01), Kim et al.
patent: 2008/0179607 (2008-07-01), DenBaars et al.
patent: 2009/0072353 (2009-03-01), Hirai et al.
patent: 2009/0250686 (2009-10-01), Sato et al.
patent: 2009/0310640 (2009-12-01), Sato et al.
patent: 2010/0108985 (2010-05-01), Chung et al.
Aminer et al., “Single-crystal hexagonal and cubic GaN growth directly on vicinal (001) GaAs substrates by molecular-beam epitaxy.” Applied Physics Letters vol. 76, No. 18 (2000): pp. 2580-2582.
Park et al., “Crystal Orientation Effects on Many-Body Optical Gain of Wurtzite InGaN/GaN Quantum Well Lasers.” Japanese Journal of Applied Physics vol. 42 (2003): pp. L170-172.
Kamiyama et al., “GaN growth on (30-38) 4H-SiC substrate for reduction of internal polarization.” Physica Status Solidi vol. 2, No. 7 (2005): pp. 2121-2124.
Van Zant, Microchip Fabrication, Fifth Edition, New York: McGraw-Hill, 2004, p. 384-385.
Nichizuka, K-, “Efficient Radiative Recombination From <1122>-oriented InxGa1-xN Multiple Quantum Wells Fabricated by the Regrowth Technique,” Applied Physics Letters, Oct. 2004, vol. 85, No. 15, pp. 3122-3124, abstract.
Sharma, R., “Demonstration of a Semipolar (1013) InGaN/GaN Green Light Emitting Diode,” Applied Physics Letters, Nov. 2005, vol. 87, 231110, pp. 1-3, abstract.
Shao, Y-P. et al., “Electrical Characterization of Semipolar Gallium Nitride Thin Films,” NNIN REU Research Accomplishments, Aug. 2005, pp. 132-133.
Bernardini, F. et al., “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Physical Review B, vol. 56, No. 16, R10 024-R10-027, Oct. 15, 1997.
Bertram, A. et al., “Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy,” Appl. Phys. Lett. 74(3):359-361, 1999.
Chakraborty, A. et al., “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett., 85(22):5143-5145, 2004.
Chakraborty, A. et al., “Demonstration of nonpolar m-plane InGaN/GaN light-emitting diodes on free-standing m-plane GaN substrates,” Jpn. J. Appl. Phys., 44(5):L173-L175, 2005.
Chakraborty, A. et al., “Properties of nonpolar a-plane InGaN/GaN multiple quantum wells grown on lateral epitaxially overgrown a-plane GaN,” Appl. Phys. Lett., 86, pp. 031901-1-031901-3, 2005.
Chitnis, A. et al., “Visible light-emitting diodes using a-plane GaN—InGaN multiple quantum wells over r-plane sapphire,” Appl. Phys. Lett., 84(18):3663-3665, 2004.
Della Sala, F. et al., “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures,” Appl. Phys. Lett., 74(14):2002-2005, 1999.
Di Carlo, A. et al., “Doping screening of polarization fields in nitride heterostructures,” Appl. Phys. Lett., 76 (26):3950-3952, 2000.
Gardner, N. et al., “Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett., 86, 111101-1 - 111101-3, 2005.
Grandjean, N. et al., “Built-in electric-field effects in wurtzite AIGaN/GaN quantum wells,” J. Appl. Phys., 86(7), 3714-3720, 1999.
Im, J. et al., “Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells,” Phys. Rev. B, 57(16):R9435-R9438, 1998.
Kim, K. et al., “Elastic constants and related properties of tetrahedrally bonded BN, AIN, GaN, and InN,” Phys. Rev. B, 53(24):16 310-16 325, 1996.
Lefebvre, P. et al, “High internal electric field in graded-width InGaN/GaN quantum well accurate determination by time spectroscopy,” Appl. Phys. Lett., 78(9):1252-1254, 2001.
Nakamura, S. et al., “InGaN/GaN/AIGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., 72(2):211-213, 1998.
Park, S. et al., “Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors,” Phys. Rev. B, 59(7):4725-4737, 1999.
Park, S., “Crystal orientation effects on electronic properties of wurtzite InGaNŌGaN quantum wells,” J. Appl. Phys., 91(12):9904-9908, 2002.
Park, S., “Piezoelectric and spontaneous polarization effects on many-body optical gain of wurtzite InGaN/GaN quantum well with arbitrary crystal orientation,” Jpn. J. Appl., 42(8):5052-5055, 2003.
Polian, M. et al., “Elastic constants of gallium nitride,” J. Appl. Phys., 79(6):3343-3344, 1996.
Sone, H. et al., “Optical and crystalline properties of epitaxial-lateral-overgrown-GaN using tungsten mask by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., 38(4A):L356-L359, 1999.
Sun, Y. et al., “Nonpolar InxGa1-x N/GaN(1100) multiple quantum wells grown on y-LiAIO2(100) by plasma-assisted molecular-beam epitaxy,” Phys. Rev. B, 67:041306-1 - 041306-4, 2003.
Suzuki, M. et al., “Biaxial strain effect on wurtzite GaN/AIGaN quantum well lasers,” Jpn. J. Appl. Phys., 35 (2B):1420-1423, 1996.
Takeuchi, T. et al., “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., 36(4A):L382-L385, 1997.
Takeuchi, T. et al., “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett., 73(12):16911693, 1998.
Takeuchi, T. et al., “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys., 39(2A):413-416, 2000.
Vurgaftman, I. et al., “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., 94(6):3675-3696, 2003.
Yablonovitch, E. et al., “Reduction of lasing threshold current density by the lowering of valence band effective mass,” J. Lightwave Tech., LT-4(5):504-506, 1986.
George, T., et al., “Novel symmetry in the growth of gallium nitride on magnesium aluminate substrates”, Applied Physics Letters, AIP, American Institute of Physics, Melville, NY, US LNKD-DOI:10.1063/1.116708,
Baker Troy J.
Chakraborty Arpan
DenBaars Steven P.
Farrell, Jr. Robert M.
Haskell Benjamin A.
Fan Michele
Gates & Cooper LLP
Japan Science and Technology Agency
Smith Matthew
The Regents of the University of California
LandOfFree
Technique for the growth and fabrication of semipolar... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Technique for the growth and fabrication of semipolar..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Technique for the growth and fabrication of semipolar... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4165396