Technique for measuring round-trip latency to computing...

Electrical computers and digital processing systems: multicomput – Computer network managing – Computer network monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S253000

Reexamination Certificate

active

06601098

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a computer system, and deals more particularly with a method, system, and computer-readable code for measuring round-trip latency to computing devices without requiring a client-side proxy presence.
2. Description of the Related Art
It is commonplace today for computer users to connect their machines to other computers, known as “servers,” through a network. The network may be a private network, such as a corporate intranet of networked computers that is accessible only to computer users within that corporation, or it may a public network, such as the Internet or World-Wide Web. The Internet is a vast collection of computing resources, interconnected as a network, from sites around the world. The World-Wide Web (referred to herein as the “Web”) is that portion of the Internet which uses the HyperText Transfer Protocol (“HTTP”) as a protocol for exchanging messages. (Alternatively, other protocols such as the “HTTPS” protocol can be used, where this protocol is a security-enhanced version of HTTP.)
The user working in a networked environment will have software running on his workstation to allow him to create and send requests for information to a server and to see the results. When the user connects to the Web, these functions are typically combined in software that is referred to as a “Web browser,” or “browser.” After the user has created his request using the browser, the request message is sent out into the Internet for processing. The target of the request message is one of the interconnected servers in the Internet network. That server will receive the message, attempt to find the data satisfying the user's request, format that data for display with the user's browser, and return the formatted response to the browser software running on the user's workstation. The response is typically in the form of a displayable file, referred to as a “Web page”, that may contain text, graphics, images, sound, video, etc.
These are examples of a client-server model of computing, where the machine at which the user requests information is referred to as the client, and the computer that locates the information and returns it to the client is the server. In the Web environment, the server is referred to as a “Web server”. The user may connect his computer to a server using a “wireline” connection or a “wireless” connection. Wireline connections are those that use physical media such as cables and telephone lines. Wireless connections, on the other hand, use media such as satellite links, radio frequency waves, and infrared waves. The user's computer may be any type of computer processor, including laptop, hand held or mobile computers; vehicle-mounted devices; cellular telephones and desktop screen phones; desktop computers; mainframe computers; etc., having processing and communication capabilities. The remote server, similarly, can be one of any number of different types of computer which have processing and communication capabilities. The computer capabilities vary widely from high speed, multi-processors with extensive real and virtual memory, to small, single processors that process a single task with a limited function operating system and limited memory. These techniques are well known in the art, and the hardware devices and software which enable their use are readily available. Hereinafter, the user's computer will be referred to as a “workstation,” and use of the terms “workstation” or “server” refers to any of the types of computing devices described above.
As more people connect their workstations to the Web, the number of messages and files being sent is skyrocketing. (Hereinafter, the terms “message” and “file” are used interchangeably when referring to data being sent through a network, unless otherwise stated.) Coupled with this increase in the number of network users and files is an increase in the size of the files commonly being sent. For example, a Web page may include one or more graphic images, each of which may consist of several hundred thousand bytes of data. Users may request many such files over the course of a day's work, or in their personal network communications.
A great deal of user frustration can result when trying to access popular Web sites which must service an ever-increasing number of user requests, and which often have slow response times due to this heavy request load. Additionally, long delays may result when users request delivery of large files to their workstation (or even when requesting relatively small files from congested servers), creating yet more user frustration. The popularity of using portable computers such as handheld devices for connecting to the Internet, or other networks of computers, is increasing as user interest in computing becomes pervasive and users are more often working in mobile (i.e wireless) environments. At the same time, the popularity of making network connections using connection services that charge fees based upon the duration of connections (such as cellular services, which are commonly used for wireless connections from portable computers) is also growing. When using this type of relatively expensive connection, the longer the user must wait to receive a file, the higher his connection charges will be. Wireless connections also tend to have high network latencies, due to the limited bandwidth available and the extra network hops (e.g. gateways) that are involved with wireless transmission. As a result, a user may have to wait a relatively long time to receive a response to a request he has sent into the network. In addition, the capabilities of the client's computer may limit the amount of data that can be received. These are some of the factors behind an increasing concern with optimizing performance of network computing environments.
One area of interest in network computing performance is the overall response time from the moment the client issues a request to a server until the server's response is received by the client. This is known as the “round trip” time of a request/response message pair. A key component of the round trip time is the network latency. Network latency is the amount of time a message spends in the network and is a valuable measurement that can be used in a number of ways. (Round trip time also includes processing time at the server and any intermediate gateways. This processing time is not pertinent to the present invention. Hereinafter, the terms “round trip time” and “network latency” will be used interchangeably.) For example, the measured latency of a network can be analyzed to determine where bottlenecks occur. This analysis allows the network engineers to add or replace resources to reduce or eliminate a bottleneck, therefore improving overall response times by reducing network latency. Another value of measuring network latency is to use the latency information to dynamically determine the content of the information to be sent in response to a client request. For example, if a server receives a request for a Web page from a client over a network with very high latencies, it would be advantageous for the server to reduce or filter the amount of information sent in response to the client's request. An example of the type of content reduction that could be used in this situation is applying a transcoding filter to transform color images into gray scale images, thereby drastically reducing the size of the response file and accordingly, the time it will take for this file to be transmitted to the client. In severe cases, more drastic forms of content reduction (such as eliminating video or image files completely) could be taken. Network latency information could also be combined with client-specific information, such as whether the client is connected over a relatively expensive wireless connection or a wireline connection, in making content-reduction choices.
This type of performance measurement in a network typically involves providing software that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Technique for measuring round-trip latency to computing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Technique for measuring round-trip latency to computing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Technique for measuring round-trip latency to computing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.