Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Cosmetic – antiperspirant – dentifrice
Reexamination Certificate
1998-08-10
2003-12-23
Padmanabhan, Sreeni (Department: 1619)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Cosmetic, antiperspirant, dentifrice
C426S417000, C426S607000, C514S786000
Reexamination Certificate
active
06667043
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to technical di-/triglyceride mixtures which are obtained by partial transesterification of vegetable oils with methyl esters, to a process for their production and to their use as oils for the production of cosmetic and/or pharmaceutical formulations.
DISCUSSION OF RELATED ART
The production of cosmetic and/or pharmaceutical preparations generally requires a hydrophilic phase and a hydrophobic phase. A broad range of oils is available to the expert for formulating such preparations. For reasons of cost, however, inexpensive paraffin oil fractions are frequently used. Although paraffin oil fractions exhibit favorable viscosity behavior and are also suitable for dissolving numerous active ingredients, they do not fit into the commercially desirable concept of a “green” formulation, i.e. a formulation based predominantly on natural, preferably vegetable, raw materials. Possible alternatives are, of course, such raw materials as, for example, glycerol tricaprylate. Unfortunately, raw materials of this type have to be produced by a special and technically elaborate synthesis from glycerol and caprylic acid and, for this reason, are about three times as expensive as paraffin oil fractions.
Accordingly, the complex problem addressed by the present invention was to provide new oils which could be produced at minimum cost from vegetable raw materials and which would therefore represent an economically acceptable alternative to paraffin oil fractions. At the same time, the oils according to the invention would meet a complex requirement profile, i.e. would be light-colored and odorless, would show adequate stability in storage and at low temperatures and, in particular, would have a cloud point below +6° C.
DESCRIPTION OF THE INVENTION
The present invention relates to technical di-/triglyceride mixtures which are obtained by partly transesterifying refined, predominantly saturated vegetable oils with (a) a mixture of glycerol and fatty acids corresponding to formula (I):
R
1
COOH (I)
in which R
1
CO is an acyl group containing 6 to 10 carbon atoms, or methyl esters thereof or (b) triglycerides based on the fatty acids corresponding to formula (I).
It has surprisingly been found that, by partly transesterifying simple refined vegetable oils with short-chain fatty compounds, the titer can be reduced to such an extent that the products not only become liquid at room temperature, they also exhibit the required stability in storage at low temperatures.
The present invention also relates to a process for the production of technical di-/triglyceride mixtures in which refined predominantly saturated vegetable oils are partly transesterified with (a) a mixture of glycerol and fatty acids corresponding to formula (I):
R
1
COOH (I)
in which R
1
CO is an acyl group containing 6 to 10 carbon atoms, or methyl esters thereof or (b) triglycerides based on the fatty acids corresponding to formula (I).
Vegetable Oils
Suitable starting materials are predominantly saturated vegetable oils which have an iodine value of 0.5 to 50. The vegetable oils are derived from fatty acids which may contain from 6 to 22 carbon atoms, although the focal point of the carbon chain distribution is in the range from 12 to 18 carbon atoms. This means that at least 80% of the fatty acids present in the vegetable oils contain from 12 to 22 and preferably from 12 to 18 carbon atoms. Typical examples are palm oil, palm kernel oil, babassu oil and/or coconut oil which are also particularly preferred. Vegetable oils which may be used after hydrogenation, i.e. after reduction of their iodine value, are olive oil, sunflower oil, rapeseed oil, peanut oil, cottonseed oil, tea seed oil chaulmoogra oil, coriander oil, linseed oil and meadowfoam oil.
Fatty Acids, Fatty Acid Methyl Esters and Triglycerides
Fatty acids suitable for partial transesterification in the presence of glycerol are caproic acid, capric acid and—in particular—caprylic acid. Instead of the fatty acids, the corresponding methyl esters may also be used. In one variant of the invention, the partial transesterification may also be directly carried out with triglycerides based on the fatty acids mentioned. Accordingly, there is no need to use glycerol.
Transesterification
In the reaction of the vegetable oils with the fatty compounds mentioned above and, optionally, the glycerol, various reactions take place alongside one another and lead to a complex mixture of diglycerides and triglycerides. In the case of the methyl ester for example, the vegetable oils undergo partial transesterification, i.e. the relatively long-chain fatty acids of the vegetable oil are at least partly replaced by the relatively short-chain fatty acids of the methyl ester. The relatively long-chain fatty acids released may, then in turn form esters with the free glycerol. Transesterification of the short-chain methyl ester with the glycerol is also possible under these conditions.
The complex reaction, which in the interests of simplicity is referred to herein as “partial transesterification”, normally takes place at temperatures of 140 to 250° C. and preferably at temperatures of 210 to 230° C. Catalysts suitable for this purpose are known substances such as, for example, zinc soaps, tin grindings, tin oxides, titanic acid esters, alkali metal hydroxides, carbonates or alcoholates and the like which are used in quantities of 0.05 to 1% by weight and preferably in quantities of 0.1 to 0.5% by weight, based on the starting materials. It is advisable to remove the methanol released during the reaction continuously from the reaction equilibrium and to neutralize the catalyst on completion of the reaction, for example by addition of bleaching earth, in order not to catalyze any back-reactions during the removal of unreacted methyl ester by distillation.
It has also proved to be of advantage to use the vegetable oils, the fatty acids or methyl esters and the glycerol in a molar ratio of 1:(2.5 to 3.5):(1.0 to 2.0), molar ratios of 1:(3.0 to 3.4):(1.3 to 1.6) being particularly preferred because an almost complete conversion is obtained under these conditions. If triglycerides are used, the ratio is calculated in the same way, but must of course be based on the number of acyl groups. As already mentioned, there is no need in these cases to use glycerol, although glycerol may be used in small amounts. The products obtained in every case have a percentage monoglyceride content below 5% by weight and are characterized by a ratio by weight of diglycerides to triglycerides of 1:3 to 1:6. Di-/triglyceride mixtures such as these are distinguished by optimal performance properties.
If necessary, the di-/triglyceride mixtures obtained after the transesterification may be subjected in known manner to deodorization. To this end, the oils are normally treated with hot steam either continuously in a falling-film column or discontinuously in a boiler, so that the steam-volatile odor carriers (for example short-chain aldehydes or ketones) are almost quantitatively removed.
Commercial Applications
The technical di-/triglyceride mixtures according to the invention are liquid at room temperature, have a cold cloud point below +6° C. and are light-colored, odorless and stable in storage. Accordingly, the present invention also relates to their use as oils for the production of cosmetic and/or pharmaceutical formulations in which they may be present in quantities of 1 to 95% by weight and preferably in quantities of 15 to 50% by weight.
Typical examples of formulations in which the new oils may be used are skin-care products such as, for example, day cremes, night cremes, skin-care cremes, nourishing cremes, body lotions, sunscreens, emollients and the like which contain additional oils, surfactants, emulsifiers, superfatting agents, stabilizers, waxes, consistency regulators, thickeners, cationic polymers, silicone compounds, biogenic agents, antidandruff agents, film formers, preservatives, hydrotropes, solubilizers, UV adsorbers, dyes and
Ansmann Achim
Kawa Rolf
Podubrin Stefan
Ridinger Richard
Cognis Deutschland GmbH & Co. KG
Drach John E.
Padmanabhan Sreeni
Trzaska Steven J.
Wells Lauren Q.
LandOfFree
Technical di- and triglyceride mixtures does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Technical di- and triglyceride mixtures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Technical di- and triglyceride mixtures will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3108131