TCP/IP network accelerator system and method which...

Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Prioritized data routing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S241000, C709S239000, C709S238000, C455S001000

Reexamination Certificate

active

06173333

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to Internet communications in general, and to a method and system in particular for substantially increasing the data throughput of TCP/IP protocol based data transmissions by selectively implementing in hardware certain portions of the TCP/IP protocol set (such as a majority of actually called and executed routines), and implementing in software routines the exceptions and remaining portions.
Since the implementation of FDDI fiber network links, the transmission speed of the physical layer to transmit data, has exceeded the ability of the end node computers to process the data packets. If the processing of the data packets is done by Von Neuman architectured end node computers, capacity is always exceeded since the switching speed of the fastest computer's gates will be approximately equal to that of the physical layer comprising the internal components of Application Specific Integrated Circuit (ASIC) chips. The computer CPU (which must process the data packets with multiple operations and copies to memory) intrinsically requires orders of magnitude more device operations than that of the analog/state machine mediated physical layer of the ASIC chips normalized to a common amount of data While the problem of scaling current computer networks to gigabit speeds has been recognized, the complexity of the TCP/IP protocols has presented both practical and conceptual barriers to attempts to implement them in any manner other than various forms of software executed processes. However, even the fastest of CPUs for any given technological generation, cannot match the physical bandwidth of their internal components.
There have been a number of attempts to accelerate TCP/IP protocol handling, but none has effectively solved the latency problems. One approach to accelerate TCP/IP protocol handling was to process the headers of the protocols independently of the data payload. While the implementation of the protocols themselves was virtually identical to existing methods (TCP/IP software stack), the data was indirectly manipulated by separate buffering to avoid multiple copies of the payload data through the use of hardware buffer management using a multi-port memory. This approach demonstrated that hardware buffer management could improve handling of large payload packets, but it did not reduce packet latency to memory, did not improve the control bandwidth of the protocol or the ability to send small packets efficiently, and did not decouple protocol processing speed from transmission speed. The approach also was not applicable to local clusters, or to small record applications like web-serving or transaction processing. Moreover, the approach did not eliminate the store/forward processing of protocols, but merely attempted to optimize the methods by which the store and forward were mediated.
ATM cell-based transmission technology incurs a cost because of segmentation and reassembly of large data payload messages into much smaller cells. Devices which attempt to minimize this cost perform this function at the signaling rate. However, this function is specific to cell-based technologies, and is not particularly useful for technologies such as Ethernet and HiPPI. The payload size of such technologies' packets do not require an adaptation layer below that of the network or IP (Internet Protocol) layer. In order to process TCP/IP protocols, traditional store and forward methods must be used.
Protocol engines have also been used to optimize traditional methods of protocol handling to reduce certain steps. These include hardware checksum units, hardware buffer management, and RISC processing to improve protocol handling rate. However, this approach still does not scale with signaling rate.
Other approaches have implemented in hardware proprietary non-TCP/IP protocols having a continuous flow and routing that is specific to the particular network fabric. Variable context matching is not performed, and cells propagate in strict format and order to a priori known memory addresses instead of to a transport protocol's abstract port destination. Therefore, such approaches are not readily adaptable to wide area networks which must handle a variable and relatively unstructured traffic flow, and which must be scaleable, expandable and readily adaptable to network changes.
It is desirable to provide a network accelerator system and method for handling standard TCP/IP protocol which solves the latency and other problems of known systems and methods, and it is to these ends that the present invention is directed.
SUMMARY OF THE INVENTION
The present invention provides a solution to the above-mentioned protocol processing problems using a cross disciplinary combination of hardware elements, techniques and results based, inter alia, on network traffic analysis, high speed programmable logic array technology, and integration with low level operating system software design.
The invention solves a problem that has been long unsolved of how to process TCP/IP data packets at a speed equal to that made possible by the latest generation physical layer hardware transmission components. As microprocessors increase in speed, the same technology advances also increase the speed at which data can be transmitted over networks. If this data protocol handling must be handled in software, then there are fundamental issues in logic and software design that will always make the ability of a processor to process the packets slower than the physical ability of the network to transmit packets. This speed differential can penalize maximum possible network performance by a factor of almost one hundred at present.
The main insights that enable the invention to provide a practical and implementable solution to the above-mentioned protocol processing problems are the recognition that the transmission patterns of the vast majority of packets over current TCP/IP mediated networks are predictable and involve only a very small subset of the entire TCP/IP protocol set. It is possible through logic design to implement this small set of actually used protocols in hardware, such as programmable logic gate arrays, to allow processing of TCP/IP data packets at speeds equal to that of the ability of the fastest physical network layer. The rare packets that cannot be handled in this manner can be defaulted to conventional software processing. An operating system also can be low-level interfaced to this processing system through appropriate memory management in such a way that the packet's data coming off the network data transmission medium can be processed and put into application memory at the speed equivalent to a single gate-mediated operation.
The invention allows practical processing of TCP/IP data packets in gate array hardware at a data throughput equal to that of the physical transmission media. It accomplishes this task by recognizing that TCP/IP packets on current networks fall into predictable transmission patterns that actually utilize only a small fraction of the entire protocol for the vast majority of transmissions. By implementing this small subset in gate array hardware and defaulting the exceptions into software, a very large increase in TCP/IP packet throughput can be obtained.
TCP/IP transmissions handled by the invention can be made faster than that possible with the best current software implementations and multiprocessor TCP/IP processing engines. Using mask programmable logic affords approaches which are both faster and less expensive to construct than the current RISC CPU assisted TCP/IP processing boards, the invention is intrinsically scaleable upwards in speed with little or no redesign needed as advances in IC processing technology makes the network physical layers faster. A form of software embedded in hardware which can be physically implemented at any point where TCP/IP packet processing is used such as in network interface cards, and within microprocessor CPUs, affording significant potential technological and economic benefits.
A

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

TCP/IP network accelerator system and method which... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with TCP/IP network accelerator system and method which..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and TCP/IP network accelerator system and method which... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2452014

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.