Tat-derived transport polypeptides

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Conjugate or complex

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S195110, C424S194100, C424S193100, C424S192100

Reexamination Certificate

active

06316003

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates to delivery of biologically active cargo molecules, such as polypeptides and nucleic acids, into the cytoplasm and nuclei of cells in vitro and in vivo. Intracellular delivery of cargo molecules according to this invention is accomplished by the use of novel transport polypeptides which comprise HIV tat protein or one or more portions thereof, and which are covalently attached to cargo molecules. The transport polypeptides in preferred embodiments of this invention are characterized by the presence of the tat basic region (amino acids 49-57), the absence of the tat cysteine-rich region (amino acids 22-36) and the absence of the tat exon 2-encoded carboxy-terminal domain (amino acids 73-86) of the naturally-occurring tat protein. By virtue of the absence of the cysteine-rich region, the preferred transport polypeptides of this invention solve the potential problems of spurious trans-activation and disulfide aggregation. The reduced size of the preferred transport polypeptides of this invention also minimizes interference with the biological activity of the cargo molecule.
BACKGROUND OF THE INVENTION
Biological cells are generally impermeable to macromolecules, including proteins and nucleic acids. Some small molecules enter living cells at very low rates. The lack of means for delivering macromolecules into cells in vivo has been an obstacle to the therapeutic, prophylactic and diagnostic use of a potentially large number of proteins and nucleic acids having intracellular sites of action. Accordingly, most therapeutic, prophylactic and diagnostic candidates produced to date using recombinant DNA technology are polypeptides that act in the extracellular environment or on the target cell surface.
Various methods have been developed for delivering macromolecules into cells in vitro. A list of such methods includes electroporation, membrane fusion with liposomes, high velocity bombardment with DNA-coated microprojectiles, incubation with calcium-phosphate-DNA precipitate, DEAE-dextran mediated transfection, infection with modified viral nucleic acids, and direct micro-injection into single cells. These in vitro methods typically deliver the nucleic acid molecules into only a fraction of the total cell population, and they tend to damage large numbers of cells. Experimental delivery of macromolecules into cells in vivo has been accomplished with scrape loading, calcium phosphate precipitates and liposomes. However, these techniques have, to date, shown limited usefulness for in vivo cellular delivery. Moreover, even with cells in vitro, such methods are of extremely limited usefulness for delivery of proteins.
General methods for efficient delivery of biologically active proteins into intact cells, in vitro and in vivo, are needed. (L. A. Sternson, “Obstacles to Polypeptide Delivery”,
Ann. N.Y. Acad. Sci
, 57, pp. 19-21 (1987)). Chemical addition of a lipopeptide (P. Hoffmann et al., “Stimulation of Human and Murine Adherent Cells by Bacterial Lipoprotein and Synthetic Lipopeptide Analogues”,
Immunobiol
., 177, pp. 158-70 (1988)) or a basic polymer such as polylysine or polyarginine (W-C. Chen et al., “Conjugation of Poly-L-Lysine Albumin and Horseradish Peroxidase: A Novel Method of Enhancing the Cellular Uptake of Proteins”,
Proc. Natl. Acad. Sci. USA
, 75, pp. 1872-76 (1978)) have not proved to be highly reliable or generally useful (see Example 4 infra,). Folic acid has been used as a transport moiety (C. P. Leamon and Low, Delivery of Macromolecules into Living Cells: A Method That Exploits Folate Receptor Endocytosis”,
Proc. Natl. Acad. Sci USA
, 88, pp. 5572-76 (1991)). Evidence was presented for internalization of folate conjugates, but not for cytoplasmic delivery. Given the high levels of circulating folate in vivo, the usefulness of this system has not been fully demonstrated. Pseudomonas exotoxin has also been used as a transport moiety (T. I. Prior et al., “Barnase Toxin: A New Chimeric Toxin Composed of Pseudomonas Exotoxin A and Barnase”,
Cell
, 64, pp. 1017-23 (1991)). The efficiency and general applicability of this system for the intracellular delivery of biologically active cargo molecules is not clear from the published work, however.
Purified human immunodeficiency virus type-1 (“HIV”) tat protein is taken up from the surrounding medium by human cells growing in culture (A. D. Frankel and C. O. Pabo, “Cellular Uptake of the Tat Protein from Human Immunodeficiency Virus”,
Cell
, 55, pp. 1189-93 (1988)). Tat protein trans-activates certain HIV genes and is essential for viral replication. The full-length HIV-1 tat protein has 86 amino acid residues. The HIV tat gene has two exons. Tat amino acids 1-72 are encoded by exon 1, and amino acids 73-86 are encoded by exon 2. The full-length tat protein is characterized by a basic region which contains two lysines and six arginines (amino acids 49-57) and a cysteine-rich region which contains seven cysteine residues (amino acids 22-37).
The basic region (i.e., amino acids 49-57) is thought to be important for nuclear localization. Ruben, S. et al.,
J. Virol
. 63: 1-8 (1989); Hauber, J. et al.,
J. Virol
. 63 1181-1187 (1989). The cysteine-rich region mediates the formation of metal-linked dimers in vitro (Frankel, A. D. et al,
Science
240: 70-73 (1988); Frankel, A. D. et al.,
Proc. Natl. Acad. Sci USA
85: 6297-6300 (1988)) and is essential for its activity as a transactivator (Garcia, J. A. et al.,
EMBO J
. 7:3143 (1988); Sadaie, M. R. et al.,
J. Virol
. 63: 1 (1989)). As in other regulatory proteins, the N-terminal region may be involved in protection against intracellular proteases (Bachmair, A. et al.,
Cell
56: 1019-1032 (1989)).
At the present time, the need exists for generally applicable means for safe, efficient delivery of biologically active molecule of interest or cargo molecules into the cytoplasm and nuclei of living cells.
SUMMARY OF THE INVENTION
The present invention relates to the use of HIV tat protein, or a tat-derived polypeptide, to deliver a molecule of interest or cargo molecule into eukaryotic cells, particularly into the cell nucleus, in vitro or in vivo. It further relates to conjugates that include an HIV tat protein and a molecule of interest, or a tat-derived polypeptide and a cargo molecule, which are useful in the method of the present invention for delivering biologically active molecules into the cytoplasm and nuclei of cells.
More particularly, this invention provides processes and products for the efficient cytoplasmic and nuclear delivery of biologically active non-tat proteins, nucleic acids and other molecules that are (1) not inherently capable of entering target cells or cell nuclei, or (2) not inherently capable of entering target cells at a useful rate. Intracellular delivery of cargo molecules according to this invention is accomplished by the use of novel transport proteins which comprise one or more portions of HIV tat protein and which are covalently attached to the cargo molecules. According to various embodiments, this invention relates to novel transport polypeptides, methods for making those transport polypeptides, transport polypeptide-cargo conjugates, pharmaceutical, prophylactic and diagnostic compositions comprising transport polypeptide-cargo conjugates, and methods for delivery of cargo into cells by means of tat-derived transport polypeptides.
The preferred transport polypeptides of this invention are characterized by the presence of the tat basic region amino acid sequence (amino acids 49-57 of naturally-occurring tat protein); the absence of the tat cysteine-rich region amino acid sequence (amino acids 22-36 of naturally-occurring tat protein) and the absence of the tat exon 2-encoded carboxy-terminal domain (amino acids 73-86 of naturally-occurring tat protein). Preferred embodiments of such transport polypeptides are: tat37-72 (SEQ ID NO:2), tat37-58 (SEQ ID NO:3), tat38-58GGC (SEQ ID NO:4), tatCGG47-58 (SEQ ID NO:5) tat47-58GGC (SEQ ID NO:6), and tat&Dgr;cys (SEQ ID NO:7). It will be recogn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tat-derived transport polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tat-derived transport polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tat-derived transport polypeptides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2590229

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.