Tapered optical waveguide coupler

Illumination – Light fiber – rod – or pipe – With optical fiber bundle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S551000, C362S553000, C385S043000, C385S031000, C385S050000

Reexamination Certificate

active

06293688

ABSTRACT:

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
(none)
BACKGROUND OF THE INVENTION
Tapered waveguides are useful for efficiently interconnecting waveguides that support modes of different dimensions. Semiconductor laser chips typically contain waveguides that tightly guide the optical mode, while the optical fiber that transmits the laser light guides weakly so that the modes match poorly if the laser is connected directly to the fiber. Many approaches have been used to improve the efficiency of such interconnections. Vertical, lateral, and refractive index tapers were demonstrated by * R. Logan, U.S. Pat. No. 3,978,426, Aug. 31, 1976, and * R. K. Winn et al., IEEE Trans. Microwave Theory and Techniques MTT23 92 (1975), and * P. G. Suchoski Jr., et al., J. Light. Technology, LT5 1246 (1987). Both waveguide claddings and fibers have been tapered; see * J. Hammer, U.S. Pat. No. 4773720, Sep. 27, 1988, and * H. Schneider, U.S. Pat. No. 4,795,228, Jan 3, 1989. Multiple stage tapers in the vertical and longitudinal directions were shown by * T. Koch, U.S. Pat. No. 4,932,032, Jun. 5, 1990 and * P. Melman, U.S. Pat. No. 5,261,017, Nov. 9, 1993. Pairs of coupled waveguides have been shown with single and multiple horizontal and vertical tapers by * Y. Shani et al., Appl. Phys. Lett. 55 2389 (1989), * E. Kapon, U.S. Pat. No. 5,078,516, Jan 7, 1992, * Zengerle et al., Elect. Lett. 28 631 (1992), * B. Stegmueller, U.S. Pat. No. 5,199,092, Mar. 30, 1993 and * R. Smith et al., IEEE Photon. Technology Lett. 8 1052 (1996). Segmented tapers are shown by Z. Weissman et al., J. Light. Technology, 11 1831 (1993), and R. Adar, U.S. Pat. No. 5,577,141, Nov. 19, 1996. A good deal of effort has also been expended recently on optimizing integrated tapers in semiconductor lasers. However, the practical constraints that apply to any specific implementation tend to require different coupling approaches depending on both materials and geometry: the processes used to manufacture and package a product must be compatible with each other, with the materials used, and with the component layout. A unique geometry of taper and waveguides is required to optimize the coupling between a laser chip that is to be butt coupled in a hybrid configuration to a planar waveguide chip.
SUMMARY OF THE INVENTION
According to the invention, a first waveguide fabricated a first distance above a first substrate may be efficiently coupled to a second waveguide fabricated on a second substrate by means of a third waveguide fabricated a second distance above the second substrate and parallel coupled to the second waveguide. The two substrates are attached to couple energy across the gap between the two respective coupling surfaces. In an embodiment, the first waveguide substrate is flipped upside down relative to the second waveguide substrate, and the two substrates are separated by the sum of the first and second distances. In another, upright, embodiment, the two substrates are separated by a difference of the first and second distances. In a further embodiment, the first substrate is bonded to a carrier substrate that is in turn attached to the second waveguide substrate. In a specific embodiment, the first waveguide is a single mode semiconductor laser waveguide that is flip-chip bonded to the second substrate, the second waveguide is a silica waveguide structure parallel coupled to the third waveguide which is a single mode tantala structure end-fire coupled to the semiconductor laser. The waveguide coupling may be optimized with a high index material in the gap between the two chips, and the waveguide thermal characteristics may be improved by using polymer in the waveguide structure, which imposes process temperature constraints on subsequent steps including bonding and deposition.
The invention will be better understood upon reference to the following detailed description in connection with the accompanying drawings.


REFERENCES:
patent: 3978426 (1976-08-01), Logan et al.
patent: 4262995 (1981-04-01), Tangonan
patent: 4415227 (1983-11-01), Unger
patent: 4773720 (1988-09-01), Hammer
patent: 4786132 (1988-11-01), Gordon
patent: 4795228 (1989-01-01), Schneider
patent: 4932032 (1990-06-01), Koch et al.
patent: 5042898 (1991-08-01), Morey et al.
patent: 5078516 (1992-01-01), Kapon et al.
patent: 5121182 (1992-06-01), Kuroda et al.
patent: 5142596 (1992-08-01), Mizuuchi et al.
patent: 5199092 (1993-03-01), Stegmueller
patent: 5261017 (1993-11-01), Melman et al.
patent: 5278926 (1994-01-01), Doussiere
patent: 5323476 (1994-06-01), Mueller et al.
patent: 5574742 (1996-11-01), Ben-Michael et al.
patent: 5577141 (1996-11-01), Adair et al.
patent: 5703989 (1997-12-01), Khan et al.
patent: 5720893 (1998-02-01), Ben-Michael et al.
patent: 5844929 (1998-12-01), Lealman et al.
patent: 5870417 (1999-02-01), Verdiell et al.
patent: 6028973 (2000-02-01), Schienle et al.
patent: 0 818 696 A2 (1998-01-01), None
patent: 0 569 181 A1 (1993-11-01), None
Weissman and Hendel, Analysis of Periodically Segmented Waveguide Mode Expanders, J. Lightwave Technology, IEEE, vol. 13, No. 10, 2053-58 (Oct. 1, 1995).
Goodwill et al., Polymer Tapered Waveguides and Flip-Chip Solder Bonding as Compatible Technologies for Efficient OEIC Coupling, 1997 Electronic Components and Technology Conference, IEEE, 788-95 (May 18, 1997).
Mizuuchi et al., High-Efficiency Coupling of Laser Diodes in Tapered Proton-Exchanged Waveguides, Electronics Letters, Nov. 22, 1990, 1992-94, vol. 26. No. 24.
Shani et al., Efficient Coupling of a Semiconductor Laser to an Optical Fiber by Means of a Tapered Waveguide on Silicon, Dec. 4, 1989, 2389-91, 55(23).
Smith et al., Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler, IEEE Photonics Technology Letters, Aug. 1996, 1052-54, vol. 8, No. 8.
Suchoski et al., Constant-Width Variable-Index Transition for Efficient Ti:LiNbO3 Waveguide-Fiber Coupling, Journal of Lightwave Technology, Sep. 1987, 1246-51, vol. LT-5, No. 9.
Tohmori et al., Spot-size Converted 1.3micron Laser with Butt-Jointed Selectively Grown Vertically Tapered Waveguide, Electronics Letters, Jun. 22, 1995, 1069-70, vol. 31, No. 13.
Vawter et al., Semiconductor Laser with Tapered-Rib Adiabatic-Following Fiber Coupler for Expanded Output-Mode Diameter, IEEE Photonics Technology Letters, Apr. 1997, 425-27, vol. 9, No. 4.
Winn et al., Coupling from Multimode to Single-Mode Linear Waveguides Using Horn-Shaped Structures, IEEE Transactions on Microwave Theory and Techniques, Jan. 1975, 92-97, vol. MTT-23, No. 1.
Zengerle et al., Waveguide Structure, Electronics Letters, Mar. 26, 1992, 631-32, vol. 28, No. 7.
Tada et al., Temperature Compensated Coupled Cavity Diode Lasers, Optical and Quantum Electronics, 1984, 463-69, vol. 16.
Lin, Ching-Fuh, Superluminescent Diodes with Bent Waveguide, IEEE Photonics Technology Letters, Feb. 1996, 206-08, vol. 8, No. 2.
Morton et al., Stable Single Mode Hybrid Lawer with High Power and Narrow Linewidth, Appl. Phys. Lett., May 16, 1994, 2634-36, vol. 64, No. 20.
Gnazzo et al., Improved Analysis and Design of Waveguide Bragg Grating Filters for Wavelength Division Multiplexing Applications, Integrated Photonics Research Conference, Optical Society of America, 1996, 410-13.
Moshrefzdeh et al., Temperture Dependence of Index of Refraction of Polymeric Waveguides, Journal of Lightwave Technology, Apr. 1992, 420-25, vol. 10, No. 4.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tapered optical waveguide coupler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tapered optical waveguide coupler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tapered optical waveguide coupler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517086

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.