Tape reel assembly with self-adjusting flange for a data...

Winding – tensioning – or guiding – Unwinding and rewinding a machine convertible information... – Cartridge system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C242S614000

Reexamination Certificate

active

06739538

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a tape reel assembly for a data storage tape cartridge. More particularly, it relates to a tape reel assembly including a self-adjusting flange component configured to limit lateral movement of storage tape otherwise wound about the tape reel.
Data storage tape cartridges have been used for decades in the computer, audio, and video fields. The data storage tape cartridge continues to be an extremely popular device for recording large volumes of information for subsequent retrieval and use.
A data storage tape cartridge generally consists of an outer shell or housing maintaining at least one tape reel assembly and a length of magnetic storage tape. The storage tape is wrapped about a hub portion of the tape reel assembly and is driven through a defined tape path by a driving system. The housing normally includes a separate cover and base, the combination of which forms an opening (or window) at a forward portion thereof for allowing access to the storage tape by a read/write head of a tape drive. This interaction between storage tape and head may take place within the housing (for example, with a mid-tape load design), or the storage tape may be directed away from the housing to an adjacent area at which the read/write head is located (for example, with a helical drive design or a leader block design). Where the tape cartridge/drive system is designed to direct the storage tape away from the housing, the data storage tape cartridge normally includes a single tape reel assembly. Conversely, where the tape cartridge/drive system is designed to provide head/storage tape interaction within or very near the housing, a two- or dual-tape reel assembly configuration is typically employed.
Regardless of the number of tape reel assemblies associated with a particular data storage tape cartridge, the tape reel assembly itself is generally comprised of three basic components; namely, an upper flange, a lower flange, and a hub. The hub forms an outer, tape-winding surface about which the storage tape is wound. The flanges are disposed at opposite ends of the hub, and are spaced to approximate the height of the storage tape. To ensure that the storage tape does not undesirably contact one of the flanges during a winding operation, the designed flange-to-flange spacing is normally slightly greater than a height of the tape. As a point of reference, unexpected contact between a flange and an edge of the tape in a once around pattern will reflex a high frequency lateral movement back to the read/write head, possibly leading to servo-tracking errors. In this regard, tape reel flanges are typically injection molded plastic components. Though cost effective, this manufacturing technique invariably results in a small amount of flange warp. This warpage, in turn, renders consistent, precise flange-to-flange spacing difficult to achieve, especially at the outer edge of the flange. As such, a well-accepted design technique is to outwardly taper an inner surface of the flange (relative to radial extension from the hub upon final assembly), thereby providing an increasing flange-to-flange spacing from the hub to an outer edge of each flange. The designed taper virtually eliminates the possibility that any unexpected deviation in the flange orientation (due to warpage) will result in potentially detrimental contact between the flange and the lateral tape edge during winding.
While the above-described flange design has proven highly successful in eliminating undesirable flange-tape edge contact (and the resulting high frequency lateral movement problems described above), other concerns have been identified. In particular, as the storage tape is wound about the hub, consecutive wound layers of tape are relatively unstable due to several layers of tape floating on a layer of air. The storage tape generally settles in against one of the flanges as a result of the bipolar energy profile in the storage tape. The air slowly leaks out from the adjacent layers of tape, but until the adjacent layers come into contact with one another, the side-to-side energy in the tape path determines which flange the tape will ultimately settle against. The low mass storage tape can shift in the lateral direction very quickly while it is winding about the hub. In fact, the storage tape may shift back and forth between the inner surface profile of the upper and lower flanges (sometimes referred to as “pack shift”). Due to the tapered inner surface flange profile described above, then, the storage tape may experience a discernable lateral shift as additional tape is continuously wound onto the tape reel assembly.
Previously, the lateral storage tape displacement identified above was of minimal concern as the servo-track associated with the storage tape was sufficiently sized to account for expected lateral displacement. In general terms, the servo-track provides a baseline by which the read/write head can ascertain a “position” of the storage tape itself. The servo-track width has heretofore been sufficient to accommodate the lateral movement associated with the tapered inner surface flange design. However, evolution of tape cartridge/tape drive technology has resulted in increasingly smaller track widths for enhanced storage space, including the servo-track. The reduced-width servo-track has a limited frequency (or lateral displacement) response. Unfortunately, the above-described tapered flange-induced tape path deviations may entail a frequency well above the bandwidth of the now smaller sized servo-track. This, in turn, can lead to servo-tracking errors.
It may be possible to address the above concern by utilizing different materials for the tape reel flanges and/or a more precise manufacturing technique. However, this approach would greatly increase the overall costs of the cartridge itself, and is thus not a feasible solution from a manufacturing standpoint. Alternatively, a pack arm roller can be incorporated into the cartridge that serves to squeeze air out from between tape layers as the tape is being wound onto the tape reel. Unfortunately, current cartridge layouts do not provide sufficient space for a pack roller, and interaction with the pack roller may, in fact, contribute to lateral tape movement. Including a separate pack roller would increase overall cartridge costs. Similarly, it may be possible to incorporate a belt into the cartridge design that would otherwise contact the tape as it is being wound onto the tape reel assembly, again forcing air out from between layers of tape. The belt itself can, however, contribute to tape distortion, and again would overtly increase overall cartridge costs.
Data storage tape cartridges continue to be important tools used to store vast amounts of information. While improvements in storage tape media and read/write head technology have greatly increased the amount of data that can be stored by a particular cartridge, previously acceptable tapered flange-related lateral tape movement may no longer be tolerable. Therefore, a need exists for a tape reel assembly configured to control a lateral position of the storage tape as it is wound about the hub that does not grossly affect overall costs.
SUMMARY OF THE INVENTION
One aspect of the present invention relates to a tape reel assembly for a data storage tape cartridge. The tape reel assembly includes a hub, a first flange, and a second flange. The hub defines a hub axis, and opposing first and second ends. The first flange extends from the first end of the hub and includes a main body and an adjustment section. The main body extends radially from the hub. The adjustment section is provided within the main body. In this regard, the adjustment section defines a tape edge contact surface and is further characterized by an increased flexibility as compared to the main body. With this construction, the tape edge contact surface is readily deflectable relative to the hub axis. Along these same lines, the adjustment section is configured such that a deflection orientation of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tape reel assembly with self-adjusting flange for a data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tape reel assembly with self-adjusting flange for a data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tape reel assembly with self-adjusting flange for a data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3191320

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.