Geometrical instruments – Distance measuring – By flexible tape
Reexamination Certificate
1999-05-06
2001-05-08
Bennett, G. Bradley (Department: 2859)
Geometrical instruments
Distance measuring
By flexible tape
C033S770000
Reexamination Certificate
active
06226886
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to tape measures, and in particular, to a tape measure having various ergonomic features and a friction member for a clip on an end of a tape rule.
BACKGROUND OF THE INVENTION
Conventional tape measures include a housing that encloses a retractable coiled tape rule. The tape measure is typically constructed to allow a user to extend the tape rule to a specific length corresponding to the length of an object being measured, either lock the tape rule using a locking button or leave the tape rule unlocked, read length of the object on the tape rule, and release the tape rule thereby allowing the tape rule to be retracted within the housing. Tape measures are commonly used at construction sites by professional carpenters and other construction site workers, and therefore tape measure manufacturers typically build tape measures with this type of working environment in mind. Consequently, tape measures are typically constructed with basic and sturdy features that allow the tape measure to withstand heavy, repetitious use. For example, tape measures are typically constructed with rigid plastic housings that are intended to withstand the shock of being dropped, and a relatively small locking button positioned in a recessed portion of the housing to prevent damage to the button if the tape measure is dropped.
In the past manufacturers have overlooked the benefits of constructing a tape measure having features that are ergonomically efficient. By producing a tape measure that is easy to grasp and easy to use, the manufacturer can produce a product that professional carpenters would be interested in using to reduce fatigue in their hands during repeated use of various tools during the workday. In addition, non-professionals, such as elderly people or even the average do-it-yourselfer, would be interested in an ergonomically efficient tape measure since the tape measure would be generally easier to control and use.
Various improvements on the tape measure construction can be made to reduce ergonomic inefficiencies of the conventional tape measure. For example, the rigid plastic housing used on conventional tape measures is uncomfortable to grasp in that it is rigid, and provides a smooth, potentially slippery, surface on which to hold the tape measure. Additionally, the locking button on a conventional tape measure tends to be small and difficult to reach unless the user's hand is positioned in an ideal position where the user's thumb is in proper alignment with the locking button.
Other features on a tape measure can improve the usefulness of the tape measure. For example, tape measures are conventionally constructed with a tape clip on an end of the tape rule. The tape clip allows the user to hook the tape clip on an edge of an object to use that object as a means for holding the end of the tape rule in position during measurement if the user does not have an assistant to hold the end of the tape. One problem with such a feature is that the tape clip has a tendency to slip off the edge of the object during measurement. One solution to this problem has been to add a friction surface to a surface on the tape clip that contacts the edge of the object (for example, see U.S. Pat. No. 5,077,911 and U.S. Pat. No, 5,210,956). However, these attempts to solve this problem have been insufficient in that the friction surfaces used were abrasive, which can damage the edge of the object being used to hold the end of the tape rule. Additionally, the friction surfaces are adhered to the surface of the tape clip, which provides a friction surface that can wear or peal off the tape clip, thereby rendering the friction surface ineffective.
Consequently, a need exists for an improved tape measure having ergonomic benefits and an improved clip on an end of the tape rule.
SUMMARY OF THE INVENTION
The present invention provides an improved tape measure having ergonomic benefits and an improved clip on an end of the tape rule. The present invention achieves these results by providing a tape measure housing and locking button having various ergonomic advantages, for example, having outer coatings of a generally soft, resilient, pliant material. The tape measure further provides a tape clip having a friction member molded thereto that is made of a material that is preferably skid resistant and soft.
The tape measure of the present invention advantageously provides a housing that encloses a coiled tape rule retractably mounted therein. The housing includes front and rear side walls connected to one another by a peripheral wall. A terminal end of the tape rule extends through an opening in the peripheral wall of the housing. The housing is advantageously constructed with an outer coating that extends over nearly all of the housing. The outer coating is made of a generally soft, resilient, pliant material, for example an elastomeric material (such as Santoprene®), rubber, or other similarly pliant material, that is overmolded onto the housing. The material used for the outer coating is also preferably a material that is skid resistant, which will not easily slip in the hand of a user. The outer coating is ergonomically efficient in that it gives the user of the tape measure a relatively soft, comfortable grip that will not easily slip out of their hands.
The tape measure of the present invention further advantageously provides a locking button that is slidably attached to the housing and is adapted to selectively prevent the tape rule from moving with respect to the opening in the housing. The locking button generally includes a central portion that is located adjacent to the peripheral wall and at least one side portion located adjacent to a side wall of the housing. The locking button has an outer surface with an outer coating thereon. The locking button of the present invention provides several ergonomic advantages, for example, the width of the locking button and inclusion of at least one side portion that is positioned adjacent a side wall of the housing enables a user to easily reach and engage the locking button with a thumb from any angle. Additionally, the locking button includes an outer coating that is ergonomically efficient in that it provides the user of the tape measure with a relatively soft, skid-resistant surface for engaging the locking button.
The tape measure of the present invention further advantageously provides a tape clip attached to a terminal end of the tape rule that includes a friction member attached to a clip portion of the tape clip. The friction member is made of a generally soft, non-skid material, for example an elastomeric material (such as Santoprene®), rubber, or other similarly non-skid material. The friction member is advantageously mounted to the clip portion by molding the friction member within a pair of apertures through the clip portion. The skid resistant material of the friction member prevents the tape clip from slipping off an edge of an object used to hold the tape clip during measurement and the soft nature of the material prevents any harm to a surface of the object. The construction of the tape clip and the friction member and the molding method used to mount the friction member to the clip portion is cost efficient and effective in fixing the. friction member rigidly to the clip portion.
Additional advantages and other features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the invention. The advantages of the invention may be realized and obtained as particularly pointed out in the appended claims.
REFERENCES:
patent: D. 275460 (1984-09-01), Cohen
patent: D. 331542 (1992-12-01), Jacoff
patent: D. 332414 (1993-01-01), Bordenave
patent: D. 342687 (1993-12-01), Kang
patent: D. 364575 (1995-11-01), Goldner
patent: D. 373090 (1996-08-01), Bennett
patent: 992170 (1911-05-01), Crane
patent: 2036720 (1936-04-01), Ritter
patent:
Akinrele Dylan
Heinzelman Bert D.
Lamond Donald R.
Stoeckmann Walter
Whitehall Richard
Bennett G. Bradley
General Housewares Corporation
McDermott & Will & Emery
LandOfFree
Tape measure does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tape measure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tape measure will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2498325