Tank venting device for motor vehicles

Internal-combustion engines – Charge forming device – Having fuel vapor recovery and storage system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S516000

Reexamination Certificate

active

06247458

ABSTRACT:

BACKGROUND OF THE INVENTION
In the field of vehicle engines, ways are constantly being sought, in the interest of the environment, to minimize the emissions that occur. Exhaust gas treatment alone is no longer sufficient for the demands now being made; the emergence of low-boiling fuel components from the fuel tank also needs to be prevented if at all possible. Sealed tank venting devices in which the fuel vapors emerging from the fuel tank are conveyed, via a venting line, to an adsorption filter have therefore been introduced. Since the activated carbon of the filter possesses only limited storage capability, the filter must be flushed with ambient air and the fuel vapors must be conveyed to the engine for combustion. The fuel vapors must be conveyed in defined quantities.
In carbureted engines or gasoline engines with intake duct injection, the fuel vapor is delivered by way of the vacuum produced in the intake duct of the carburetor. This method is not possible to the desired extent, however, in direct-injection engines, which yield considerable fuel saving. But there are difficulties with turbocharged gasoline engines as well, since in significant portions of the characteristics diagram the pressure in the intake duct is positive with respect to the atmosphere. Ways have therefore been sought to improve the flushing mass flow.
German Unexamined Application 196 39 116 discloses a tank venting device for motor vehicles in which an air delivery pump is used for the regeneration quantity. A device of this kind is independent of the vacuum in the intake duct of the engine. The air delivery pump is operated at variable rotation speed as a metering pump. It can also be used as a diagnosis pump in order to detect leaks. A device of this kind is relatively sluggish, however, since there is a long delay in the pump's reaction to changes in engine output.
SUMMARY OF THE INVENTION
An object of the present invention is the creation of a tank venting device in which the regeneration flow rate is independent of pressure conditions in the engine region, which in addition ensures the predefined regeneration flow rate both at full load and when the engine is idling, and which moreover reacts without delay to changes in engine output. The regeneration flow rate is to be controlled in proportion to the engine mass flow rate.
The aforesaid object is achieved in a tank venting device for motor vehicles having a fuel tank, an adsorption filter attached thereto that receives the fuel vapors and has a closable air inlet, and which has a regeneration line to the engine in which an air delivery pump is arranged, by the provision of a regeneration valve controlled by the engine controller in the regeneration line before the air delivery pump in order to regulate the regeneration flow rate. It has been found in tests that this arrangement of regeneration valve and air delivery pump yields surprisingly good results.
It is advantageous that when the engine is stopped, the device is closed by the regeneration valve. The respective maximum regeneration volume is reached when the engine is at full load and also part load. The necessary vacuum in the activated carbon filter is maintained at every engine output level.
Regeneration valves for the control of regeneration quantities are known per se. In most cases they control the regeneration quantities by timed, pulse-width modulated activation as a function of engine output in engines in which a vacuum is present in the intake duct. Their use in conjunction with an air delivery pump, specifically on the intake side before the pump, yields surprisingly good results in the metering of the regeneration quantities, regardless of the pressure present in the engine's fuel delivery system.
The air delivery pump can be driven both electrically and mechanically. It is pilot-controlled by the regeneration valve. The particular advantages of the tank venting device can be achieved by way of this combination of air delivery pump and regeneration valve. The delivery output of the air delivery pump can thus be approximately constant over broad ranges of differential pressure.
To ensure that the tank venting device can also be utilized in leak diagnosis, the air delivery valve is equipped with a switchover valve to reverse the delivery direction. As is already known per se from the aforementioned document, this results in a pressure buildup in the system and allows leakage measurement. To prevent any impermissible excess pressure from being caused, however, a pressure relief valve is arranged between the intake and discharge fittings of the air delivery pump.
Advantageously, the air delivery pump, the switchover valve, the pressure relief valve, and the regeneration valve are combined into one module.
The module is mounted as close as possible to the engine block so that the requisite lines between pump and intake duct can be kept as short as possible.
To assist in leak diagnosis and also to improve the determination of the tank fill level, a connectable throttling element, having a defined outlet opening, is provided between the fuel tank and the regeneration valve, preferably on the adsorption filter. When connected, the throttling element allows a simulated pressure drop. By performing the leak diagnosis with and without the throttling element connected, a test can be performed by comparing the results. The fill level can be calculated from the time difference.
The air delivery pump and the valves are involved in performance of the leak diagnosis. Once the delivery direction of the air delivery pump has been changed by activating the switchover valve with the regeneration valve open, the pressure in the tank venting device is elevated to a predefined diagnosis pressure. A pressure sensor on the fuel tank then causes the regeneration valve to close, and the leakage rate can be ascertained with the diagnostic device. To check and equalize the results, the above procedure can be repeated with the throttling element connected.
The invention will be explained in more detail with reference to two exemplary embodiments.


REFERENCES:
patent: 5245975 (1993-09-01), Ito
patent: 5349935 (1994-09-01), Mezger et al.
patent: 5390645 (1995-02-01), Cook et al.
patent: 5483942 (1996-01-01), Perry et al.
patent: 5499614 (1996-03-01), Busato et al.
patent: 5715799 (1998-02-01), Blomquist et al.
patent: 5881700 (1999-03-01), Gras et al.
patent: 196 39 116 (1998-03-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tank venting device for motor vehicles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tank venting device for motor vehicles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tank venting device for motor vehicles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.