Tank cover system with substantial gas seal

Static structures (e.g. – buildings) – Article or material supported cover

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S003000, C052S005000, C052S282100, C052S650300, C052S762000

Reexamination Certificate

active

06802157

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention is concerned with covers for large tanks, particularly tanks in sewage treatment processes, for containing malodorous gases.
Tank covers of the general type with which this invention is concerned are shown in U.S. Pat. Nos. 6,151,835, 6,012,259, 5,941,027, 5,911,662, 5,617,677, 5,545,358 and 5,325,646. These patents are incorporated herein by reference.
Increasingly there is a need for covers to enclose in-ground and above ground tanks used for storing waste materials including sewage, chemical sludge, petroleum products and other volatile and odorous materials. The materials generally are stored for later disposal or treatment in such tanks. Such a cover must be substantially gas tight for controlling odors in the vicinity of the tank site and for trapping potentially hazardous gases. Often the gases are withdrawn for cleaning, such as by biofiltration, placing a slight vacuum in the airspace above the tank. The tank should be substantially seated to minimize intrusion of air.
A tank cover is generally too large to be conveniently or cost effectively shipped in an assembled form from a manufacturer to the site of the tank. Because of this, tank covers for relatively large tanks are generally shipped as components and assembled at the site.
Prior art tank covers made of steel are heavy and expensive even to ship in component form. Further, such covers usually require welded connections and bolted connections in their assembly. As such, skilled personnel may be necessary to carry out the assembly, and the assembly process may be lengthy and costly. Some prior tank covers have been formed of sheet metal panels assembled at the site.
It is a purpose of the present invention to produce a highly modular tank cover system which requires very few fasteners and which allows for thermal expansion and contraction movement while still maintaining an almost complete gas seal.
SUMMARY OF THE INVENTION
The invention accomplishes these goals with unique metal extrusions which are assembled on-site in a modular system that is easily put together, with almost no fasteners and with other features providing for efficiency in installation and an effective substantially gas tight seal.
The system includes spanning beams of the appropriate size and spacing for the tank span to be covered. This may be, for example, approximately 12 feet to over 20 feet. Such span lengths can overlap with those addressed by the tank cover structure in U.S. Pat. No. 6,012,259, and can extend to greater lengths with larger beams or closer beam spacing.
In the system of the invention, a modular and nearly fastener-free cover system, substantially gas tight, is provided for open-top tanks which may be of the types described above. An important component is a gutter extrusion which includes a elongated gutter and flanges with sealing gaskets for engaging the top surface of the concrete on the tank as well as the inner wall of the tank several inches below the top. The gutter extrusion has gas seals at each of these two contact areas. The gasket seal which bears against the inner wall of the tank preferably comprises a structural member as well as a seal, helping hold the flange of the gutter extrusion from the tank wall. The seal preferably is pleated, with a type of bellows configuration, allowing the seal to compress to varying degrees on an irregular concrete surface, while still maintaining a seal. This and other seals may advantageously be formed of multi-durometer Santoprene.
The gutter strip is secured to the tank structure by a series of hold-down clips which are spaced apart at intervals, primarily at positions adjacent to the series of beams. These hold-down clips advantageously are extrusions, cut to the desired width (e.g. about 4 inches), with interlocking structure for sliding interlocking engagement with the gutter extrusion upon assembly. The cross section of the hold-down clip is configured to mate with the cross section of the horizontal flange on the gutter strip. On assembly to the tank, these hold-down clips are secured into the concrete using concrete anchor bolts, at a position somewhat removed from the tank edge, e.g. about 5 inches away. This provides for a stronger concrete anchoring by removing the anchor from near the edge of the concrete, and also helps avoid problems with other structure existing around the tank, such as handrails. Further, the bolt hole in the hold-down clip for receiving the anchor bolt preferably is angled such that the bolt is assembled obliquely from the outside, at an angle which may be about 15° to 30°. This further aids in assembly by avoiding problems with handrails and other structure, and also helps draw the clip into firm engagement with the gutter strip. The purpose of the clips is to structurally prevent the gutter strips from pulling or tipping inwardly into the tank.
It is an important feature that the gutter is secured only with fasteners entering into the horizontal surface of the concrete, without requiring any fasteners to be secured into the vertical face of the tank, providing for considerably easier installation and avoiding the requirement that the installer enter the tank.
The gutter extrusion is thus cantilevered over the tank. Structural spanning beams rest on a platform at the inward side of the gutter extrusion, the entire extrusion having a relatively large width, e.g. 7 inches to 12 inches, and preferably about 10 inches to 11 inches, and extending over the tank about 8 inches to 9 inches in one preferred embodiment. These dimensions of course depend on the scale of the tank cover project, but the preferred dimensions will serve spans of a length somewhat more than 20 feet.
The manner which the spanning beams are supported on and secured to the gutter extrusion forms an important feature of the system. Thermal expansion and contraction are encountered to a considerable degree in large tank covers, primarily cause by changes in external atmospheric conditions. A beam of 20 feet or more can exhibit a length difference of ¼ inch to ½ inch, between extremes of temperature. Importantly, the beams in the system of the invention are not secured to the gutter extrusions by fasteners, but instead are retained by a unique connection which allows for thermal expansion/contraction (length of the beam) and for movement in the perpendicular direction as well. This connection comprises a hold-down member which assembles slidingly into the gutter extrusion, at the side of the extrusion inboard of the tank. The gutter extrusion is formed in a preferred embodiment with a “key” shape which receives the slidable hold-down member by end assembly, such that the hold-down member cannot pull upwardly out of the gutter extrusion. Various such slidable, interlocking shapes can be used. The slidable hold-down connection member allows the beams to be moved to the appropriate positions on assembly, and also allows for other shifting in position which may occur due to thermal expansion and contraction affects.
The decking of the tank cover system preferably is formed of assembled extrusions (e.g. aluminum extrusions), similar to what is shown in U.S. Pat. Nos. 6,151,835, 6,012,259, 5,941,027, 5,911,662 and 5,617,677, referenced above. These preferably aluminum extrusions are assembled in substantially sealed relationship in panels, each panel resting on two of the spaced apart beams. The panels may be formed of interlocked deck slats extending in a direction perpendicular to the beams, with panel end members attached to edge deck planks and having flanges extending outwardly for sealing, and channel sections extending perpendicular to the deck planks and parallel to the main beams, receiving the ends of the deck planks, and with flanges which extend outwardly to rest on the beams. Gasket seals are positioned between the top of the beam and the flange of the panel. In a preferred embodiment, these gasket seals are slidingly connected to the tops of the extruded beams, in an interlocking connection, and with each gasket

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tank cover system with substantial gas seal does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tank cover system with substantial gas seal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tank cover system with substantial gas seal will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3297892

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.