Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor
Reexamination Certificate
2000-11-28
2003-09-30
Jones, Deborah (Department: 1775)
Adhesive bonding and miscellaneous chemical manufacture
Methods
Surface bonding and/or assembly therefor
C156S250000, C156S269000, C156S433000, C156S510000, C156S517000, C156S543000
Reexamination Certificate
active
06627031
ABSTRACT:
This invention relates to article tagging and more particularly is concerned with applying tags to articles whereby their presence can be detected by electronic article surveillance techniques.
It is known for retail stores to provide certain of their articles for sale with tags formed of electromagnetic sensor material which can be detected by detection equipment. Ordinarily, at the point of sale, the cashier removes the tag from the article. Alternatively, the cashier deactivates the tag or by-passes the detection equipment. If, however, a thief attempts to avoid the cashier with the intention of stealing the article, he must necessarily pass the detection equipment which detects the presence of the tag and sounds an alarm. Hitherto, the tags have generally been applied, at the store, either manually or using a hand operated applicator of the type used to apply pressure sensitive adhesive labels. Such applicators are used in conjunction with a carrier tape in the form of a siliconised release paper or liner carrying detectable devices which are transferred from the carrier tape to the articles by the applicator. Thus is particularly time-consuming and expensive. Thus, only those articles which are of particularly high value such as clothes, compact discs, videos, perfumes, books and spirits tend to be tagged. However, the tags are usually fairly conspicuous and hence can be removed by the thief.
Attempts have been made to provide the articles with tags at source i.e. during the production of the article or during the production of the packaging for the article or at a time when the article is being packaged. These attempts have essentially involved motorising a pressure sensitive adhesive labeller of the above type. However such a system is still expensive because of the need to separate the detectable devices from the carrier tape, wind up the carrier tape from which the detectable devices have been removed, and apply the devices to the articles. Further, the system could, at best, apply 3 or 4 devices per second and hence the article production or article packaging line had to be slowed down with attendant cost disadvantages.
It is an object of the present invention to enable articles to be provided with tags at source automatically, cheaply and rapidly.
According to one aspect of the present invention there is provided a tagging material for the production of a tag for securing to an article to enable the presence of the article to be detected, which tagging material is in the form of a pressure sensitive adhesive tape having a first surface coated with pressure sensitive adhesive composition and a second surface opposite the first surface coated with release agent, the tape including a continuous substrate of synthetic plastics material and a continuous electromagnetic sensor material capable of being detected by detection equipment.
In accordance with one embodiment, the electromagnetic sensor material is adhered to the substrate by the pressure sensitive adhesive composition.
In this case, the electromagnetic sensor material may be in the form of a ribbon having a high magnetic permeability and low coercivity such as Permalloy metal and certain amorphous alloys of iron, nickel or cobalt which, when exposed to a continuous alternating magnetic interrogation field, is driven successively into and out of magnetic saturation by the alternating magnetic interrogation field. This results in a disturbance of the interrogation field such that other magnetic fields are produced at frequencies harmonically related to the interrogation field. The signal represented by these other fields can then be detected. It is particularly preferred for the material of the ribbon to be such that it can be activated so that it reacts in the above way when subjected to such an alternating magnetic interrogation field and then be subsequently deactivated so as not to react in that way. Switchable materials of this type are well known in the art and are described in, for example, U.S. Pat. No. 5,029,291, U.S. Pat. No. 5,121,103, U.S. Pat. No. 5,206,626, U.S. Pat. No. 5,304,983 and U.S. Pat. No. 5,126,270 and also in an article by K H Shin, C D Graham Jr. and P Y Zhou entitled Asymmetric Hysteresis Loops in Cobalt-based Ferromagnetic Alloys at page 2772 of IEEE Transactions on Magnetics, September 1992 (all of which are incorporated herein by reference).
In an alternative embodiment, the electromagnetic sensor material may be of the type incorporating thin film technology. For example, the sensor material may comprise a thin continuous metal film and a perforate metal film adhered to either side of a film of synthetic plastics material. The perforate metal film is then laminated to one face of the substrate, the release agent is coated on the opposite face of the substrate and the pressure sensitive adhesive composition is coated on the continuous metal film. Such materials are, for example, marketed by Esselte Meto. As in the previous embodiment, the electromagnetic sensor material includes Permalloy or amorphous metal alloys.
The substrate of the pressure sensitive adhesive tape will ordinarily be in the form of a thin base film of synthetic plastics material having a thickness of, for example, from 30 to 60 microns and a width of from 2 to 10 mm and preferably not less than 4 mm. The plastics material of the base film is generally oriented either monoaxially or biaxially and any thermoplastic plastics material may be used for the base film provided that it has adequate strength and dimensional stability. Preferably, the base film is formed of monoaxially oriented polypropylene or polyester.
Any suitable pressure sensitive adhesive composition may be used. Thus, it may, for example, be based on natural or synthetic rubber or on acrylic copolymers. Preferably the adhesive is a natural rubber resin solvent based system although aqueous or solvent based acrylic copolymers can be used.
Normally a primer coating is provided between the pressure sensitive adhesive composition and the surface of the base film so as to promote anchorage of the pressure sensitive adhesive composition. That surface of the base film which is not coated with the pressure sensitive composition is generally coated with a release agent such as a silicone release lacquer.
The tagging material of the first aspect of the invention may be produced by coating one of the surfaces of a web of the base film material with the pressure sensitive adhesive composition and the other of its surfaces with the release agent. The coated web is then slit longitudinally into wide strips in a first cutting stage and the strips are then slit longitudinally into narrow tapes in a second cutting stage. A plurality of spaced apart cutting edges is used at each cutting stage. Ribbons of the electromagnetic sensor material are fed to each of the wide strips as it is being cut at the second cutting stage so that a ribbon passes between each pair of adjacent cutting edges and is then effectively adhered to the resultant tapes by means of the pressure sensitive adhesive composition of the tapes. The tape is of a sufficient width that the ribbon does not cover all of the pressure sensitive adhesive composition so that sufficient adhesive surface is available to enable the tape to be wound up onto a reel and to be adhered to the article.
The tagging material can be traverse wound onto a reel in lengths of from 1,000 to 50,000 linear metres, preferably 25,000 metres. The material can be self-wound in that there is no need to include a release paper when winding the material onto a reel.
According to a second aspect of the present invention there is provided a method of providing an article with a means of enabling the presence of the article to be detected which method comprises the steps of:
(i) providing a tagging material as hereinbefore defined,
(ii) causing an article to move along an article path,
(iii) moving the tagging material along a tagging material path converging with the article path,
(iv) severing a predetermined length from the tagging mate
Brooks Gary
Dean Andrew
Pinchen Stephen Paul
Jones Deborah
P. P. Payne Limited
Seyfarth Shaw
Stein Stephen
LandOfFree
Tagging material method and means for applying tagging material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tagging material method and means for applying tagging material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tagging material method and means for applying tagging material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3075228