Illumination – Self powered lamp – With movable focusing element
Reexamination Certificate
1996-10-28
2001-09-04
O'Shea, Sandra (Department: 2875)
Illumination
Self powered lamp
With movable focusing element
C362S205000
Reexamination Certificate
active
06283609
ABSTRACT:
BACKGROUND OF INVENTION
1. Field of Invention
This invention is generally related to flashlights and is more specifically directed to flashlights that can be attached to implements such as law enforcement batons or nightsticks. The invention is most specifically directed to a flashlight that incorporates circuit boards as electrical components, an adjustable focus that cannot be inadvertently altered, and a switch that is positioned to enhance ease of use particularly in law enforcement situations.
2. Description of the Prior Art
Flashlights are well known in the prior art and have been heavily utilized in emergency situations and by law enforcement personnel in the execution of their duties. During use, such flashlights may be subjected to harsh environments and treatment, and therefore should be designed to withstand the application of various forces, whether rolling around under the seat of a car or blocking blows from suspects, as well as the presence of debris, including water and mud, that could interfere with the operation of the flashlight. Generally, such flashlights include a housing which is formed of a body section and a head section. The head section typically is disposed to receive a lens, a reflector, and a lamp, all of which are secured in the head by a lens ring that is threadingly engaged with the head section. The body section houses batteries utilized to energize the lamp.
The electrical circuit of such flashlights is typically comprised of a first wire or metallic strip that connects the positive terminal of the battery with the positive lead of the lamp, and a second wire or metallic strip that connects the negative terminal of the battery with the negative lead of the lamp. The second wire may be attached to an electrically conductive spring that contacts the negative terminal of the battery while urging the positive terminal of the battery into contact with the first wire. In some prior art embodiments, the second wire is attached directly to the flashlight housing or barrel such that the circuit is completed utilizing the housing itself as a conductor, the housing also being attached to the conductive spring.
To control operation of the lamp, a switch is disposed within the circuit. There are numerous varieties of switches that are utilized in the prior art to open and close a circuit. These switches are generally either mechanical or electrical. One common variety is a slide switch that mounts on the forward body section of the flashlight and utilizes a metallic strip to bridge a gap created in the wiring on the negative side of the electrical system. The switch includes a slide member that mounts in a slot on the external surface of the body section. The slide member can be used to move the metallic strip between a first “off” position in which the metallic strip is insulated from contact with the negative side of the electrical system and a second “on” position in which the metallic strip bridges the gap in the circuit, closing the circuit to activate the flashlight lamp.
Another type of switch simply replaces the slide switch with a forward mounted, push-button switch that can be activated to open and close a circuit. Push-button switches, whether mechanical or electrical, are well known in the art and are generally characterized by a distinctive “click” as the switch is engaged and disengaged. In the case of mechanical push-button switches, this “click” is generated as metallic parts within the switch strike one another. In other instances, such as in electrical pushbutton switches, the “click” emanates from the depression and release of a spring mechanism or catch mechanism within the switch. In any event, such switches are undesirable because the distinctive “click” could be used by suspects or those under surveillance to identify the presence or location of law enforcement personnel.
Push button switches are also commonly used as “dead man” switches. In law enforcement, it is often desirable to utilize a switch that only maintains electrical contact when the switch is depressed and manually held down by the user. Upon release of the button, the electrical circuit is interrupted. Thus if the flashlight falls from the user's hand, the circuit is broken and the flashlight is extinguished. For example, if a police officer becomes injured or incapacitated in such a way as to drop his or her flashlight, a deadman switch will cause the flashlight to extinguish, preventing a suspect from ascertaining the injured officer's location. Another common use of such a switch is to permit intermittent use of a flashlight, such as for signalling purposes. In any event, like the other prior art push button-type switches, dead man switches are characterized by a distinctive “click” as the switch is engaged and disengaged.
Although push button switches are generally more reliable than slide switches, push button switches are susceptible to damage from exposure to moisture or particulate matter such as dust or dirt. Therefore, push button switches incorporated into flashlights are often covered to inhibit migration of moisture and debris into the switch. The covering is usually some type of thin, resilient membrane such as rubber or the like and may take several different forms. For example, MAGLITE, a well known flashlight manufacturer, provides a bowl shaped cover with a thin lip around the open end of the cover. The cover also has an aperture or slit in the center of the bowl. To “seal” the cover over the switch, the cover is placed over the switch so that the lip is sandwiched between an inner portion and an outer portion of the flashlight. An allen wrench is then inserted through the slit to engage a threaded fastener attaching the inner and outer portions. The threaded fastener is then rotated to draw the inner and outer portions together such that the lip of the switch cover is tightly sandwiched between the inner and outer portions. Clearly, although the outer perimeter of the switch cover is sealed, the slit in the bowl of the switch cover still renders the switch cover penetrable by moisture and debris.
Another type of switch used in the prior art flashlights utilizes the flashlight housing as a portion of the negative side of the electrical circuit. Typically, these types of flashlights require rotation of one portion of the flashlight body relative to another portion of the flashlight body to open and close the circuit. The head of the flashlight must be rotated relative to the body of the flashlight to activate and deactivate the flashlight lamp. In such a configuration, the negative lead from the lamp is attached to the flashlight head, while the negative terminal from the battery is attached to the flashlight body. The body and the head are threadingly engaged to permit rotation of the head relative to the body. When assembled, the head and body are insulated from one another to preclude electrical contact. Only upon additional rotation of the head towards the body is electrical contact between conductive portions of the two sections achieved such that the negative circuit is closed.
In another similar type of switch, a flashlight is provided with an endcap that can be rotated relative to the body of the flashlight to close the negative side of the electrical circuit. The endcap is in electrical contact with the negative terminal of a battery and is threadingly engaged with the flashlight body. However, the endcap is insulated from electrical contact with the body itself such that the conductive portions of the body and endcap are not in contact. Only upon rotation of the endcap relative to the body are the electrically conductive portions of the endcap and body brought together to close the circuit and activate the flashlight lamp. An example of such a flashlight is manufactured by Laser Products, and further includes a mechanical deadman switch positioned on side of the endcap.
Switches such as the above-mentioned push-button type and slide type are typically mounted at the forward end of the flashlight near the head portion of the body.
Keller Donald A.
Parsons Kevin L.
Reeves Clay C.
Armament Systems and Procedures, Inc.
Conte Robert F. I.
Lee Mann Smith McWilliams Sweeney & Ohlson
Neils Peggy A
O'Shea Sandra
LandOfFree
Tactical flashlight does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tactical flashlight, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tactical flashlight will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2529818