Table-based compression with embedded coding

Image analysis – Image compression or coding – Quantization

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S246000

Reexamination Certificate

active

06360019

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to data processing and, more particularly, to data compression, for example as applied to still and video images, speech and music. A major objective of the present invention is to enhance collaborative video applications over heterogeneous networks of inexpensive general purpose computers.
As computers are becoming vehicles of human interaction, the demand is rising for the interaction to be more immediate and complete. Where text-based e-mail and database services predominated on local networks and on the Internet, the effort is on to provide such data intensive services such as collaborative video applications, e.g., video conferencing and interactive video.
In most cases, the raw data requirements for such applications far exceed available bandwidth, so data compression is necessary to meet the demand. Effectiveness is a goal of any image compression scheme. Speed is a requirement imposed by collaborative applications to provide an immediacy to interaction. Scalability is a requirement imposed by the heterogeneity of networks and computers.
Effectiveness can be measured in terms of the amount of distortion resulting for a given degree of compression. The distortion can be expressed in terms of the square of the difference between corresponding pixels averaged over the image, i.e., mean square error (less is better). The mean square error can be: 1) weighted, for example, to take variations in perceptual sensitivity into account; or 2) unweighted.
The extent of compression can be measured either as a compression ratio or a bit rate. The compression ratio (more is better) is the number of bits of an input value divided by the number of bits in the expression of that value in the compressed code (averaged over a large number of input values if the code is variable length). The bit rate is the number of bits of compressed code required to represent an input value. Compression effectiveness can be characterized by a plot of distortion as a function of bit rate.
Ideally, there would be zero distortion, and there are lossless compression techniques that achieve this. However, lossless compression techniques tend to be limited to compression ratios of about 2, whereas compression ratios of 20 to 500 are desired for collaborative video applications. Lossy compression techniques always result in some distortion. However, the distortion can be acceptable, even imperceptible, while much greater compression is achieved.
Collaborative video is desired for communication between general purpose computers over heterogeneous networks, including analog phone lines, digital phone lines, and local-area networks. Encoding and decoding are often computationally intensive and thus can introduce latencies or bottlenecks in the data stream. Often dedicated hardware is required to accelerate encoding and decoding. However, requiring dedicated hardware greatly reduces the market for collaborative video applications. For collaborative video, fast, software-based compression would be highly desirable.
Heterogeneous networks of general purpose computers present a wide range of channel capacities and decoding capabilities. One approach would be to compress image data more than once and to different degrees for the different channels and computers. However, this is burdensome on the encoding end and provides no flexibility for different computing power on the receiving end. A better solution is to compress image data into a low-compression/low distortion code that is readily scalable to greater compression at the expense of greater distortion.
State-of-the-art compression schemes have been promulgated as standards by an international Motion Picture Experts Group; the current standards are MPEG-1 and MPEG-2. These standards are well suited for applications involving playback of video encoded off-line. For example, they are well suited to playback of CD-ROM and DVD disks. However, compression effectiveness is non-optimal, encoding requirements are excessive, and scalability is too limited. These limitations can be better understood with the following explanation.
Most compression schemes operate on digital images that are expressed as a two-dimensional array of picture elements (pixels) each with one (as in a monochrome or gray-scale image) or more (as in a color image) values assigned to each pixel. Commonly, a color image is treated as a superposition of three independent monochrome images for purposes of compression.
The lossy compression techniques practically required for video compression generally involve quantization applied to monochrome (gray-scale or color component) images. In quantization, a high-precision image description is converted to a low-precision image description, typically through a many-to-one mapping. Quantization techniques can be divided into scalar quantization (SQ) techniques and vector quantization (VQ) techniques. While scalars can be considered one-dimensional vectors, there are important qualitative distinctions between the two quantization techniques.
Vector quantization can be used to process an image in blocks, which are represented as vectors in an n-dimensional space. In most monochrome photographic images, adjacent pixels are likely to be close in intensity. Vector quantization can take advantage of this fact by assigning more representative vectors to regions of the n-dimensional space in which adjacent pixels are close in intensity than to regions of the n-dimensional space in which adjacent pixels are very different in intensity. In a comparable scalar quantization scheme, each pixel would be compressed independently; no advantage is taken of the correlations between adjacent pixels. While, scalar quantization techniques can be modified at the expense of additional computations to take advantage of correlations, comparable modifications can be applied to vector quantization. Overall, vector quantization provides for more effective compression than does scalar quantization.
Another difference between vector and scalar quantization is how the representative values or vectors are represented in the compressed data. In scalar quantization, the compressed data can include reduced precision expressions of the representative values. Such a representation can be readily scaled simply by removing one or more least-significant bits from the representative value. In more sophisticated scalar quantization techniques, the representative values are represented by indices; however, scaling can still take advantage of the fact that the representative values have a given order in a metric dimension. In vector quantization, representative vectors are distributed in an n-dimensional space. Where n>1, there is no natural order to the representative vectors. Accordingly, they are assigned effectively arbitrary indices. There is no simple and effective way to manipulate these indices to make the compression scalable.
The final distinction between vector and scalar quantization is more quantitative than qualitative. The computations required for quantization scale dramatically (more than linearly) with the number of pixels involved in a computation. In scalar quantization, one pixel is processed at a time. In vector-quantization, plural pixels are processed at once. In the case, of popular 4×4 and 8×8 block sizes, the number of pixels processed at once becomes 16 and 64, respectively. To achieve minimal distortion, “full-search” vector quantization computes the distances in an n-dimensional space of an image vector from each representative vector Accordingly, vector quantization tends to be much slower than scalar quantization and, therefore, limited to off-line compression applications.
Because of its greater effectiveness, considerable effort has been directed to accelerating vector quantization by eliminating some of the computations required. There are structured alternatives to “full-search” VQ that reduce the number of computations required per input block at the expense of a small increase in distortion. Str

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Table-based compression with embedded coding does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Table-based compression with embedded coding, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Table-based compression with embedded coding will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860187

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.