T helper cell epitopes

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S204100, C424S186100, C424S278100, C435S069100, C435S343100, C435S343200, C530S300000, C536S023740

Reexamination Certificate

active

06685947

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to T helper cell epitopes derived from Canine Distemper Virus (CDV). The present invention relates to compositions including at least one T helper cell epitope and optionally B cell epitopes and/or CTL epitopes.
BACKGROUND OF THE INVENTION
For any peptide to be able to induce an effective antibody response it must contain particular sequences of amino acids known as epitopes that are recognised by the immune system. In particular, for antibody responses, epitopes need to be recognised by specific immunoglobulin (Ig) receptors present on the surface of B lymphocytes. It is these cells which ultimately differentiate into plasma cells capable of producing antibody specific for that epitope. In addition to these B cell epitopes, the immunogen must also contain epitopes that are presented by antigen presenting cells (APC) to specific receptors present on helper T lymphocytes, the cells which are necessary to provide the signals required for the B cells to differentiate into antibody producing cells.
In the case of viral infections and in many cases of cancer, antibody is of limited benefit in recovery and the immune system responds with cytotoxic T cells (CTL) which are able to kill the virus-infected or cancer cell. Like helper T cells, CTL are first activated by interaction with APC bearing their specific peptide epitope presented on the surface, this time in association with MHC class I rather than class II molecules. Once activated the CTL can engage a target cell bearing the sane peptide/class I complex and cause its lysis. It is also becoming apparent that helper T cells play a role in this process; before the APC is capable of activating the CTL it must first receive signals from the helper T cell to upregulate the expression of the necessary costimulatory molecules.
Helper T cell epitopes are bound by molecules present on the surface of APCs that are coded by class II genes of the major histocompatibility complex (MHC). The complex of the class II molecule and peptide epitope is then recognised by specific T-cell receptors (TCR) on the surface of T helper lymphocytes. In this way the T cell, presented with an antigenic epitope in the context of an MHC molecule, can be activated and provide the necessary signals for the B lymphocyte to differentiate. Traditionally the source of helper T cell epitopes for a peptide immunogen is a carrier protein to which peptides are covalently coupled but this coupling procedure can introduce other problems such as modification of the antigenic determinant during the coupling process and the induction of antibodies against the carrier at the expense of antibodies which are directed toward the peptide (Schutze, M. P., Leclerc, C. Jolivet, M. Audibert, F. Chedid, L. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immunol. 1985, 135, 2319-2322; DiJohn, D., Torrese, J. R. Murillo, J. Herrington, D. A. et al. Effect of priming with carrier on response to conjugate vaccine. The Lancet. 1989, 2, 1415-1416). Furthermore, the use of irrelevant proteins in the preparation introduces issues of quality control. The choice of appropriate carrier proteins is very important in designing peptide vaccines and their selection is limited by factors such as toxicity and feasibility of their large scale production. There are other limitations to this approach including the size of the peptide load that can be coupled and the dose of carrier that can be safely administered (Audibert, F. a. C., L. 1984. Modern approaches to vaccines. Molecular and chemical basis of virus virulence and immunogenicity., Cold Spring Harbor Laboratory, New York.). Although carrier molecules allow the induction of a strong immune response they are also associated with undesirable effects such as suppression of the anti-peptide antibody response (Herzenberg, L. A. and Tokuhisa, T. 1980. Carrier-priming leads to hapten-specific suppression. Nature 285:664; Schutze, M. P., Leclerc, C., Jolivet, M., Audibert, F., and Chedid, L. 1985. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immunol 135:2319; Etlinger, H. M., Felix, A. M., Gillessen, D., Heimer, E. P., Just, M., Pink, J. R., Sinigaglia, F., Sturchler, D., Takacs, B., Trzeciak, A., and et, a. 1988. Assessment in humans of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite,
Plasmodium falciparum
. J Immunol 140:626).
In general then, an immunogen must contain epitopes capable of being recognised by helper T cells in addition to the epitopes that will be recognised by surface Ig or by the receptors present on cytotoxic T cells. It should be realised that these types of epitopes may be very different. For B cell epitopes, conformation is important as the B cell receptor binds directly to the native immunogen. In contrast, epitopes recognised by T cells are not dependent on conformational integrity of the epitope and consist of short sequences of approximately nine amino acids for CTL and slightly longer sequences, with less restriction on length, for helper T cells. The only requirements for these epitopes are that they can be accommodated in the binding cleft of the class I or class II molecule respectively and that the complex is then able to engage the T-cell receptor. The class II molecule's binding site is open at both ends allowing a much greater variation in the length of the peptides bound (Brown, J. H., T. S. Jardetzky, J. C. Gorga, L. J. Stern, R. G. Urban, J. L. Strominger and D. C. Wiley. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1, Nature 364:33) with epitopes as short as 8 amino acid residues being reported (Fahrer, A. M., Geysen, H. M., White, D. O., Jackon, D. C. and Brown, L. E. Analysis of the requirements for class II-restricted T-cell recognition of a single determinant reveals considerable diversity in the T-cell response and degeneracy of peptide binding to I-Ed J. Immunol. 1995. 155: 2849-2857).
Canine distemper virus (CDV) belongs to the subgroup of morbillivirus of paramyxovirus family of negative-stranded RNA viruses. Other viruses which are members of this group are measles virus and rinderpest virus. Development of peptide based vaccines has aroused considerable interest in identification of B and T cell epitopes from sequences of proteins. The rationale for using T cell epitopes from proteins such as the F protein of CDV is that young dogs are inoculated against CDV in early life and will therefore possess helper T cells specific for helper T cell epitopes present on this protein. Subsequent exposure to a vaccine which contains one or more of the epitopes will therefore result in recruitment of existing helper T cells and consequently an enhanced immune response. Such helper T cell epitopes could, however, be administered to unprimed animals and still induce an immune response. The present inventors aimed to identify canine T cell epitopes from the sequence of CDV fusion protein so that these epitopes can then be used in the design of peptide based vaccines, in particular, for the canine and related species.
LHRH (Luteinisiing hormone releasing hormone) is a ten amino acids long peptide hormone whose sequence is conserved in mammals. It is secreted by the hypothalamus and controls the reproductive physiology of both males and females. The principle of development of LHRH-based immunocontraceptive vaccines is based on observations that antibodies to LHRH block the action of the hormone on pituitary secretion of luteinising hormone and follicle stimulating hormone, leading to gonadal atrophy and sterility in mammals.
Most LHRH vaccines that have been developed consist of LHRH chemically conjugated to protein carriers to provide T cell help for the generation of anti-LHRH antibodies. It has been shown that upon repeated inoculation of LHRH-protein carrier conjugates the anti-LHRH titre decreases due to the phenomenon known as “carrier induced epitope suppression”. One aim of the present invent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

T helper cell epitopes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with T helper cell epitopes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and T helper cell epitopes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325636

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.