Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements
Reexamination Certificate
2000-01-19
2003-09-02
Cabeca, John (Department: 2173)
Computer graphics processing and selective visual display system
Display driving control circuitry
Controlling the condition of display elements
C345S215000, C345S215000, C345S215000
Reexamination Certificate
active
06614456
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention is directed to a graphical user interface for an image capture device or an image forming device.
2. Description of Related Art
Scanners and other types of image capture devices, and digital copiers and other image forming devices, have become ubiquitous office productivity tools for generating electronic images of physical original documents or generating physical copies of electronic images. Once an electronic image has been generated, either from scratch or from a physical original document, the electronic image data can be used in an infinite variety of ways to increase the productivity and the product quality of an office. Such image capture devices include desktop scanners, other stand alone scanners, digital still cameras, digital video cameras, the scanning input portions of digital copiers, facsimile machines and other multi-function devices that are capable of generating electronic image data from an original document, and the like. These image capture devices can also include image databases that store previously captured electronic image data. Such image forming devices include digital copiers, laser printers, ink jet printers, color ink jet printers, and the like.
However, as the costs of these various image capture devices and image forming device have dropped and the output quality of the physical copies and the captured electronic image data has improved, these image capture devices and image forming devices have been provided with an ever increasing number of controllable features. Similarly, as users have become comfortable with capturing and using electronic image data obtained from original documents to create physical copies, the uses to which the electronic image data has been put, and thus the needed control over the quality and appearance of the electronic image data and the physical copies, have expanded greatly.
In response, standard interfaces between such image capture devices, including those indicated above, and the various application programs that use such captured electronic image data has been developed. These standard interfaces allow standard compliant image capture devices and standard compliant applications to easily communicate. One exemplary embodiment of such a standard interface is the TWAIN™ interface. The TWAIN™ interface allows any TWAIN™ compliant application program to input and use electronic image data using any TWAIN™ compliant image capture device.
SUMMARY OF THE INVENTION
The TWAIN™-compliant component protocol facilitates communication between application programs and image capture devices, such as those indicated above. One such TWAIN™ image capture device is the XEROX® DigiPath™ scanner.
The ever-increasing numbers of features provided by image forming devices and image capturing devices, such as the Xerox® DigiPath™ scanner, cause users of these image forming devices and image capturing devices to find it increasingly difficult to obtain the desired image forming or image capturing results.
In particular, one such feature provided by image forming devices and image capturing devices is the ability to finely control various image quality response curves. One such response curve is the tone reproduction curve (TRC). In particular, in some image forming devices and image capture devices, it is possible to finely control the tone reproduction curve beyond merely providing the conventional lower-resolution indication that the entire output image should be lighter or darker than the entire input image.
Accordingly, to enable this fine control, the user is often provided with a graphical user interface, such as that shown in
FIG. 5
, that allows the user to define a number of points to which a response curve is to be fit. Once the various points are defined, a response curve is fit to or through these points. However, even sophisticated users have trouble intuitively appreciating the effects of this adjusted response curve in converting the input image values to the output image values. Thus, it is often difficult for even sophisticated users to use the graphical user interface shown in
FIG. 5
to obtain the desired output image.
This invention thus provides systems, methods and graphical user interfaces that allow the user to finely control a response curve of an image quality for an image forming or capture device in a more intuitive manner.
This invention separately provides systems, methods and graphical user interfaces that provide a plurality of slider portions that allow the user to more intuitively control the image quality response curve.
This invention separately provides systems and methods and graphical user interfaces that include slider portions that mimic control elements of conventional control panels.
This invention separately provides systems, methods and graphical user interfaces that provide control elements for controlling portions of an image quality response curve that each closely mimic the conventional lightness/darkness controls of a photocopier.
In various exemplary embodiments of the systems, methods and graphical user interfaces according to this invention, an image quality response curve control graphical user interface includes a plurality of slider portions. Each slider corresponds to a point, or a range of points, of the image quality response curve. The slider portions are arranged so that the points, or range of points, associated with each slider portion are themselves arranged in an easily understandable order. Each slider portion indicates, for the associated point, or range of points, of the input image the image value of the output image for that point, or for that range of points.
In various exemplary embodiments, the appearance of a portion of each of the slider portions is altered based on the selected image value of the output image for the point, or the range of points, of the input image. Thus, the user can intuitively appreciate the effects of adjustments made to the image quality response curve, such as a tone reproduction curve.
These and other features and advantages of this invention are described in or are apparent from the following detailed description of various embodiments of the systems, methods and graphical user interfaces according to this invention.
REFERENCES:
patent: 5412773 (1995-05-01), Carlucci et al.
patent: 5615347 (1997-03-01), Davis et al.
patent: 5640595 (1997-06-01), Baugher et al.
patent: 5659790 (1997-08-01), Kim et al.
patent: 5751285 (1998-05-01), Kashiwagi et al.
patent: 5920317 (1999-07-01), McDonald
patent: 6215487 (2001-04-01), Barrett et al.
patent: 6333752 (2001-12-01), Hasegawa et al.
Rodrigues Rudolph A.
Rzepkowski Kristinn R.
Bautista X. L.
Cabeca John
Oliff & Berridg,e PLC
Xerox Corporation
LandOfFree
Systems, methods and graphical user interfaces for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems, methods and graphical user interfaces for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems, methods and graphical user interfaces for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3037671