Optical: systems and elements – Stereoscopic – With right and left channel discriminator
Reexamination Certificate
1998-07-21
2001-06-26
Chang, Audrey (Department: 2872)
Optical: systems and elements
Stereoscopic
With right and left channel discriminator
C359S462000, C359S464000, C348S057000, C348S058000
Reexamination Certificate
active
06252707
ABSTRACT:
FIELD AND BACKGROUND OF THE MOTION
The present invention relates in general to systems for three-dimensional viewing and projection. More particularly, the present invention relates to systems for three-dimensional viewing and projection which can be used by one or more viewers to obtain a perception of depth while viewing still or motion pictures needless of use of eyeglasses.
Various attempts have been made over the years to develop and implement methods and apparatuses to represent scenes and objects in a manner which produces a sense of depth perception, known in the art as three-dimensionality.
Aside from methods involving rotating objects, rotating mirrors, and the like (usually classified as ‘depth illusion’ in the American patent classification scheme), and methods involving holographic techniques or using coherent light sources, the methods used involve a variety of schemes for transporting two different images to a viewer's left and right eyes. The two different images are typically produced by two cameras placed side by side in a manner which in turn simulates the vision of two human eyes.
The mammalian vision system, as well known, employs the differences between a given scene as perceived by the right eye and the same scene as perceived by the left eye, to extract information regarding the distance of objects within the scene relative to the viewer. Since objects close to the viewer appear displaced to the right in the view seen by the left eye, and the very same objects appear displaced to the left in the view seen by the right eye, while more distant objects show less such displacement and most distant objects show no such displacement at all, it is possible to calculate the distance of objects within the scene as a function of the amount of lateral displacement observed, and this, apparently, is what the human visual system does in our normal binocular (i.e., three-dimensional) vision of the world.
When a pair of images containing an appropriate parallax information is presented, one image to the left eye and the other to the right eye, a similar experience of apparent depth perception results. In the following, an image intended for the left eye is referred to as a left image, and an image intended for the right as a ‘right image’.
The prior art of three-dimensional viewing may be broken into categories as follows. The first category includes hand-held viewing apparatuses (known in the art as ‘viewers’) of various sorts, based on lenses, prisms, mirrors, or combinations thereof, which viewers are held close to the eyes and deliver an appropriate image to each of the eyes. The second category includes methods aimed at viewing images without optical apparatus held next to the eye (i.e. without eyeglasses and/or viewers), which methods are based on interposing a plurality of lenticular elements in the display. The third category includes systems involving eyeglasses worn by the viewer, which eyeglasses filter light according to its polarization. The fourth category includes systems involving eyeglasses worn by the viewer, which eyeglasses filter light according to wavelength (i.e., color). The fifth category includes systems involving eyeglasses worn by the viewer and employing switching mechanisms capable of rapid on/off switching (i.e., shutter systems) of optical elements. The sixth category includes side-by-side implementations such as random-dot stereograms. And finally, the seventh category includes methods employing flat screens for viewing images without a need for optical apparatus to be held next to the eye (i.e. without eyeglasses and/or viewers) and not involving lenticular surfaces. These methods are based primarily on interposing physical impediments arranged in a flat screen placed between the viewer and the image to be viewed, which impediments hide part of an image from one eye while allowing it to be seen by the other eye.
Each of the above listed categories has its associated inherent disadvantages as follows.
As far as the first category is of concern, viewing apparatuses of the sort which require lenses, prisms, or mirrors held in proximity with the viewer's eyes, are generally less convenient than alternatives which do not require special eyeware and do not require the viewer using them to hold the apparatus or to approach his eyes to special eyepieces. As the invention here disclosed involves no necessary use of lenses, prisms, or mirrors, and does nor require the viewer to look through a viewing apparatus placed or held near the eyes, it is basically dissimilar and advantageous over apparatuses thus categorized.
As far as the second category is of concern, lenticular systems are relatively difficult and expensive to manufacture for high quality image presentation due to the amount of precision associated with their production, if high-resolution images are desired. Moreover lenticular systems will always present images having a lower resolution than the resolution of which the display device to which the lenticular array is attached to is inherently capable. Evidently, lenticular systems are not well adapted for viewing systems such as computer displays and television and are therefore not in wide use. U.S. Pat. No. 4,957,351 to Shioji discloses an example of the second category, describing the use of a lenticular systems in which alternating lines representing parts of left and right images are refracted, each line through an associated lens, which directs it selectively to the right or left eyes.
As far as the third through fifth categories are of concern, they all require the use of eyeglasses or an equivalent by the viewer. The term ‘eyeglasses’ is referred to herein in a general sense of an optical apparatus having left and right eyepieces held close to the eyes of the viewer in such a way that substantially all the light entering the left eye is subject to an influence imposed by the left eyepiece, and all the light entering the right eye is subject to an influence imposed by the right eyepiece. As mentioned, three-dimensional systems thus categorized all require the use of eyeglasses, which select, whether by color (wavelength), timing (shutter), or polarization, the images reaching each of the eyes. These categories include apparatuses having a form of conventional eyeglasses (e.g., ones used for reading), but also include devices such as, but not limited to, pilot helmets having head-up displays (HUD), virtua-reality headgears and similar designs. As mentioned, systems falling into these categories share a common disadvantage, they all require an inherent use of special eyeglasses or a headgear. The necessity for optical apparatus held near the eyes subtracts from the pleasure, comfort and naturalness of the experience of viewing the display, and may, depending on the system used, add significantly to the expense.
As far as the third category is of concern, polarizing eyeglasses deal with arrangements in which a display system polarizes light derived from the left image in a given particular orientation and polarizes light derived from the right image in another particular orientation. Accordingly, the viewer wears a set of polarizing filters one for each eye. The filter of the left eye passes light polarized in the particular orientation in which the left image was polarized, whereas the filter of the right eye passes only light polarized in the particular other orientation in which the right image was polarized. Consequently each eye sees only the image appropriate to it and does not see the image which is inappropriate to it, thus a three-dimensional image is viewed by the viewer. U.S. Pat No. 5,113,285 to Franklin discloses a system using polarizing eyeglasses to provide the left and right images to the appropriate eyes. U.S. Pat. No. 4,719,507 to Bos discloses a system employing polarizing eyeglasses to distinguish between the left and right images, and -also uses switchable rotating means to determine, in a temporal sequence, which image receives which polarization. These and similar systems have the disadvantage
Kleinberger Ilan
Kleinberger Paul
3ality, Inc.
Chang Audrey
LandOfFree
Systems for three-dimensional viewing and projection does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems for three-dimensional viewing and projection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems for three-dimensional viewing and projection will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2487985