Radiant energy – Radiant energy generation and sources – With radiation modifying member
Reexamination Certificate
2008-04-29
2008-04-29
Berman, Jack I. (Department: 2881)
Radiant energy
Radiant energy generation and sources
With radiation modifying member
C250S503100
Reexamination Certificate
active
11512821
ABSTRACT:
Systems and methods are disclosed for protecting an EUV light source plasma production chamber optical element surface from debris generated by plasma formation. In one aspect of an embodiment of the present invention, a shield is disclosed which comprises at least one hollow tube positioned between the optical element and a plasma formation site. The tube is oriented to capture debris while allowing light to pass through the tube's lumen via reflection at relatively small angles of grazing incidence. In another aspect of an embodiment of the present invention, a shield is disclosed which is heated to a temperature sufficient to remove one or more species of debris material that has deposited on the shield. In yet another aspect of an embodiment of the present invention, a system is disclosed which a shield is moved from a light source plasma chamber to a cleaning chamber where the shield is cleaned.
REFERENCES:
patent: 2759106 (1956-08-01), Wolter
patent: 3150483 (1964-09-01), Mayfield et al.
patent: 3232046 (1966-02-01), Meyer
patent: 3279176 (1966-10-01), Boden
patent: 3746870 (1973-07-01), Demarest
patent: 3960473 (1976-06-01), Harris
patent: 3961197 (1976-06-01), Dawson
patent: 3969628 (1976-07-01), Roberts et al.
patent: 4042848 (1977-08-01), Lee
patent: 4088966 (1978-05-01), Samis
patent: 4143275 (1979-03-01), Mallozzi et al.
patent: 4162160 (1979-07-01), Witter
patent: 4203393 (1980-05-01), Giardini
patent: 4364342 (1982-12-01), Asik
patent: 4369758 (1983-01-01), Endo
patent: 4504964 (1985-03-01), Cartz et al.
patent: 4507588 (1985-03-01), Asmussen et al.
patent: 4536884 (1985-08-01), Weiss et al.
patent: 4538291 (1985-08-01), Iwamatsu
patent: 4561406 (1985-12-01), Ward
patent: 4596030 (1986-06-01), Herziger et al.
patent: 4618971 (1986-10-01), Weiss et al.
patent: 4626193 (1986-12-01), Gann
patent: 4633492 (1986-12-01), Weiss et al.
patent: 4635282 (1987-01-01), Okada et al.
patent: 4751723 (1988-06-01), Gupta et al.
patent: 4752946 (1988-06-01), Gupta et al.
patent: 4774914 (1988-10-01), Ward
patent: 4837794 (1989-06-01), Riordan et al.
patent: 4928020 (1990-05-01), Birx et al.
patent: 5023897 (1991-06-01), Neff et al.
patent: 5027076 (1991-06-01), Horsley et al.
patent: 5102776 (1992-04-01), Hammer et al.
patent: 5126638 (1992-06-01), Dethlefsen
patent: 5142166 (1992-08-01), Birx
patent: 5175755 (1992-12-01), Kumakhov
patent: 5313481 (1994-05-01), Cook et al.
patent: 5319695 (1994-06-01), Itoh et al.
patent: RE34806 (1994-12-01), Cann
patent: 5411224 (1995-05-01), Dearman et al.
patent: 5448580 (1995-09-01), Birx et al.
patent: 5504795 (1996-04-01), McGeoch
patent: 5729562 (1998-03-01), Birx et al.
patent: 5763930 (1998-06-01), Partlo
patent: 5866871 (1999-02-01), Birx
patent: 5936988 (1999-08-01), Partlo et al.
patent: 5963616 (1999-10-01), Silfvast et al.
patent: 5970076 (1999-10-01), Hamada
patent: 6031241 (2000-02-01), Silfvast et al.
patent: 6031598 (2000-02-01), Tichenor et al.
patent: 6039850 (2000-03-01), Schulz
patent: 6051841 (2000-04-01), Partlo
patent: 6064072 (2000-05-01), Partlo et al.
patent: 6172324 (2001-01-01), Birx
patent: 6195272 (2001-02-01), Pascente
patent: 6285743 (2001-09-01), Kondo et al.
patent: 6307913 (2001-10-01), Foster et al.
patent: 6317448 (2001-11-01), Das et al.
patent: 6377651 (2002-04-01), Richardson et al.
patent: 6396900 (2002-05-01), Barbee, Jr. et al.
patent: 6452194 (2002-09-01), Bijkerk et al.
patent: 6452199 (2002-09-01), Partlo et al.
patent: 6493423 (2002-12-01), Bisschops
patent: 6549551 (2003-04-01), Partlo et al.
patent: 6566667 (2003-05-01), Partlo et al.
patent: 6566668 (2003-05-01), Rauch et al.
patent: 6567450 (2003-05-01), Myers et al.
patent: 6576912 (2003-06-01), Visser et al.
patent: 6580517 (2003-06-01), Lokai et al.
patent: 6586757 (2003-07-01), Melnychuk et al.
patent: 6590959 (2003-07-01), Kandaka et al.
patent: 6625191 (2003-09-01), Knowles et al.
patent: 6647086 (2003-11-01), Amemiya et al.
patent: 6683936 (2004-01-01), Jonkers
patent: 6744060 (2004-06-01), Ness et al.
patent: 6770896 (2004-08-01), Schriever
patent: 6804327 (2004-10-01), Schriever et al.
patent: 6815700 (2004-11-01), Melnychuk et al.
patent: 6865255 (2005-03-01), Richardson
patent: 7087914 (2006-08-01), Akins et al.
patent: 7109503 (2006-09-01), Bowering et al.
patent: 2003/0068012 (2003-04-01), Ahmad et al.
patent: 2003/0219056 (2003-11-01), Yager et al.
patent: 2005/0008818 (2005-01-01), Olszewski et al.
patent: 2005/0199829 (2005-09-01), Partlo et al.
patent: 2006/0091109 (2006-05-01), Partlo et al.
patent: 2006/0131515 (2006-06-01), Partlo et al.
Andreev, et al., “Enhancement of laser/EUV conversion by shaped laser pulse interacting with Li-contained targets for EUV lithography”, Proc. OfSPIE, 5196:128-136, (2004).
Apriuzese, J.P., “X-Ray Laser Research Using Z Pinches,”Am. Inst. of Phys. 399-403, (1994).
Bollanti, et al., “Compact Three Electrodes Excimer Laser IANUS for a POPA Optical System,”SPIE Proc. (2206)144-153, (1994).
Bollanti, et al., “Ianus, the three-electrode excimer laser,”App. Phys. B(Lasers&Optics) 66(4):401-406, (1998).
Braun, et al., “Multi-component EUV Multilayer Mirrors,”Proc. SPIE, 5037:2-13, (2003).
Choi, et al., “A 1013A/s High Energy Density Micro Discharge Radiation Source,”B. Radiation Characteristics, p. 287-290.
Choi, et al., “Fast pulsed hollow cathode capillary discharge device,”Rev. of Sci. Instrum. 69(9):3118-3122 (1998).
Choi et al., Temporal development of hard and soft x-ray emission from a gas-puff Z pinch, Rev. Sci. Instrum. 57(8), pp. 2162-2164 (Aug. 1986).
H. Eichler, et al., “Phase conjungation for realizing lasers with diffraction limited beam quality and high average power,” Techninische Universitat Berlin, Optisches Institut, (Jun. 1998).
R. Fedosejevs and A. A. Offenberger, “Subnanosecond pulses from a KrF Laser pumped SF6Brillouin Amplifier”, IEEE J. QE 21, 1558-1562 (1985).
Feigl, et al., “Heat Resistance of EUV Multilayer Mirrors for Long-time Applications,”Microelectric Engineering, 57-58:3-8, (2001).
Fomenkov, et al., “Characterization of a 13.5nm Source for EUV Lithography based on a Dense Plasma Focus and Lithium Emission,” Sematech Intl. Workshop on EUV Lithography (Oct. 1999).
Giordano and Letardi, “Magnetic pulse compressor for prepulse discharge in spiker-sustainer excitati technique for XeCl lasers,” Rev. Sci. Instrum 65(8), pp. 2475-2481 (Aug. 1994).
Hansson, et al., “Xenon liquid jet laser-plasma source for EUV lithography,” Emerging Lithographic Technologies IV,Proc. Of SPIE, vol. 3997:729-732 (2000).
Jahn, Physics of Electric Propulsion, McGraw-Hill Book Company, (Series in Missile and Space U.S.A.), Chap. 9, “Unsteady Electromagnetic Acceleration,” p. 257 (1968).
Shibin Jiang, et al., “Compact multimode pumped erbium-doped phosphate fiber amplifiers,” Optical Engineering, vol. 42, Issue 10, pp. 2817-2820 (Oct. 2003).
Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft X-Ray Source,”J. Appl. Phys. (33) Pt. 1, No. 8:4742-4744 (1991).
Kato, et al., “Plasma focus x-ray source for lithography,”Am. Vac. Sci. Tech. B., 6(1): 195-198 (1988).
K. Kuwahara et al., “Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering”, J. Opt. Soc. Am. B 17, 1943-1947 (2000).
Lange, Michael R., et al., “High gain coefficient phosphate glass fiber amplifier,”NFOEC2003, paper No. 126.
Lebert, et al., “Soft x-ray emission of laser-produced plasma using a low-debris cryogenic nitrogen target,”J. App. Phys., 84(6):3419-3421 (1998).
Lebert, et al., “A gas discharged based radiation source for EUV-lithography,” Intl. Conf. Micro and Nano-Engineering 98 (Sep. 22-24, 1998) Leuven, Belgium.
Lebert, et al., “Investigation of pinch plasmas with plasma parameters promising ASE,” Inst. Phys. Conf. Ser No. 125: Sectio
Bowering Norbert
Hansson Bjorn A. M.
Berman Jack I.
Cymer Inc.
Hillman Matthew K.
Leybourne James J
LandOfFree
Systems for protecting internal components of a EUV light... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems for protecting internal components of a EUV light..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems for protecting internal components of a EUV light... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3932895