Surgery – Miscellaneous
Reexamination Certificate
1999-09-07
2003-11-25
Hindenburg, Max F. (Department: 3736)
Surgery
Miscellaneous
Reexamination Certificate
active
06651669
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to medical systems, and more specifically, to systems, apparatus and methods for limiting the re-usage of medical probes, such as catheters and surgical probes.
BACKGROUND
Catheters, surgical probes and related probe devices (collectively referred to, hereinafter, as “medical probes” or “probes”) are used today in diagnostic and therapeutic medical procedures that require surgical or minimally invasive access to target tissue areas within interior regions of the body. During these procedures, a physician locates the distal end of the medical probe at the target site by, in the case of a catheter, steering the medical probe through a main vein or artery (typically, the femoral vein or artery), or, in the case of a surgical probe, advancing the medical probe through the surgical opening leading to the target site.
The physician then operates the medical probe to activate a functional component mounted at the probe distal end, thereby providing therapeutic treatment to and/or diagnosis of the interior region. Due to the potential of passing any of a variety of dangerous diseases from one patient to another, prudent consideration dictates that the reuse of such probes should be prevented or, at the least, minimized. Typically, medical probes that are re-used are sterilized between uses to kill any disease-causing agents and to. remove any tissue that has collected on the medical probe during the previous use. Sterilization of used medical probes, however, is not fool-proof, and oftentimes ineffective when tissue located on the medical probe is not exposed to the full effect of the sterilization process. Thus, even a sterilized medical probe may pose a threat to patients.
Minimizing re-use of medical probes that provide therapy becomes even more critical. During the therapeutic process, it is important for the physician to control the therapeutic component at the probe distal end carefully and precisely, so that adverse damage to a therapeutic component of the medical probe does not occur. Sterilization of and re-use of therapeutic medical probes subjects the therapeutic component to mechanical, chemical and/or thermal stress, thus jeopardizing the control that the physician may have of the therapeutic component.
The need for-careful and precise control over a therapeutic medical probe is especially critical during procedures that ablate tissue within the heart. These procedures, called electrophysiological therapy, are becoming more widespread for treating cardiac rhythm disturbances. When inside the desired chamber of the heart, the physician manipulates a steering mechanism to place one or more electrodes located at the distal end of the medical probe into direct contact with the heart tissue to be ablated. The physician then directs radio frequency energy from the electrodes through the tissue to an indifferent electrode, thereby ablating the tissue and forming a lesion. If the electrodes or the electrical wires connected thereto are worn or faulty, however, ablation may be ineffective and, in the worst case, may cause charring of the heart tissue.
Preventing or limiting re-usage of medical probes, while still allowing legitimate use of these probes, is made difficult by a possible scenario wherein the physician uses the medical probe, temporarily disconnects the probe from the control. unit, and reconnects the probe to the control unit to continue the-procedure. Thus, there is a danger of deeming the continued procedure to be re-usage of the medical probe, which may result in the probe being rendered prematurely inoperable.
Thus, it would be desirable to provide an improved medical system for minimizing the re-usage of medical probes, while still allowing legitimate use of these probes.
SUMMARY OF THE INVENTION
The present invention is directed to improved apparatus and methods for providing historical operational information for-medical probes, such as, e.g., catheters and surgical probes, and for limiting usage of such medical probes.
In a preferred method performed in accordance with a first aspect of the invention, usage of a selected medical probe is limited by operating a plurality of medical probes, storing historical operational indicators in a database, such as, e.g., a catalog, wherein each of the historical operational indicators are based on the operation of each of the plurality of medical probes, and conditionally operating the selected medical probe based on the stored historical operational indicators.
By way of non-limiting example, the historical operational indicators can include probe identification codes, initial probe usage times and/or incremental probe usages. Conditional operation of the selected medical probe can be based on the presence of probe identification code corresponding to the selected medical probe within the database. Or if the selected medical probe is one of the plurality of medical probes, conditional operation of the selected medical probe can be based on the initial probe usage time and/or the probe incremental usage.
In another preferred method performed in accordance with a further aspect of the invention, historical operational information on a medical probe selected from a plurality of medical probes is obtained by operating the plurality of medical probes, storing, in a database, such as, e.g., a catalog, a historical operational indicator set based on the operation of each of the plurality of medical probes, wherein each of the stored historical operational indicators sets includes a stored probe identification code corresponding to the respective medical probe, and obtaining historical operational information for the selected medical probe by matching a probe identification code corresponding to the selected medical probe with one of the stored probe identification codes.
By way of non-limiting example, each of the historical operational indicator sets includes one or more supplementary historical operational indicators, such as, e.g., an initial probe usage time and/or an incremental probe usage, which provide historical operational information on the respective medical probes in additional to that provided by the probe identification codes. The historical operational information obtained can be displayed and/or used to conditionally operate the selected medical probe.
In an embodiment constructed in accordance with still another aspect of the invention, a control unit for connection to a selected medical probe, comprises control circuitry having a memory, wherein the control circuitry is configured for storing, in the memory, a plurality of historical operational indicator sets based on an operation of a respective plurality of medical probes, and for conditionally operating the selected medical probe based on the stored historical operational indicator sets.
By way of non-limiting example, the control unit is an RF generator having a microprocessor as the control circuitry. Each of the historical operational indicator sets can include a probe identification code corresponding to the respective medical probe, and the microprocessor is configured for conditionally operating the selected medical probe based on the presence of a probe identification code corresponding to the selected medical probe within the memory. Each of the historical operational indicator sets can also include one or more supplementary historical operational indicators, such as, e.g., an initial probe usage time and/or an incremental probe usage. The microprocessor is configured for recalling the historical operational indicator set corresponding to the selected medical probe by matching the probe identification code corresponding to the selected medical probe with a stored probe identification code, and for conditionally operating the selected medical probe based on the one or more supplementary historical operational indicators within the recalled historical operational indicator set.
“The supplementary operational indicators I
SO
provide historical operational information concerning the operation
Bingham & McCutchen LLP
Hindenburg Max F.
Sci-Med Life Systems, Inc.
Szmal Brian
LandOfFree
Systems and methods to identify and disable re-used single... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods to identify and disable re-used single..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods to identify and disable re-used single... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3176776