Pulse or digital communications – Transceivers
Reexamination Certificate
2001-02-12
2003-06-24
Phu, Phuong (Department: 2631)
Pulse or digital communications
Transceivers
C375S316000, C375S295000, C370S330000, C455S418000
Reexamination Certificate
active
06584146
ABSTRACT:
FIELD OF THE INVENTION
The invention relates in general to communication systems and in particular to wireless communication systems that can communicate audio, video and data signals.
BACKGROUND OF THE INVENTION
The field of wireless telecommunications has grown rapidly in recent years, and the demand for wireless telecommunication services and equipment continues to grow. This notable growth is due, in part, to the proliferation of new communication standards and the development of new hardware technologies. For example, the successful adoption of cellular telecommunication standards has promoted the growth of the cellular telephone industry and driven the development of smaller and more power efficient cellular telephones that incorporate new hardware technologies that provide for greater conversion rates between the analog and digital domain, and greater digital signal processing power.
Although the new these new standards and hardware technologies have provided a slew of new devices that often work exceptionally well, these devices are generally dedicated to a specific application and communication protocol. Usually, support for a new application or standard requires replacement of hardware. In the case of infrastructure devices such as base stations, especially in the case of the large infrastructure networks operated by leading service providers, the cost of hardware replacement to support a new application or standard is extremely high. The high cost significantly reduces the rate at which new communications technologies and their benefits are introduced into the marketplace.
To address this issue, multi-modal devices have been created wherein a single hardware device that can be located at a base station may support more than one communications standard. These devices, however, require that the standard to be supported be pre-selected, typically at the time of installation or reinstallation. Once the standard is selected, the device will support the selected standard, until a reinstallation occurs and the device is reconfigured. Although valuable, such multi-modal devices do not fulfill the need for flexibility in wireless communications infrastructure. For example, current base stations provide static processing resources and processing capability dedicated to each standard and application. Thus, it is these systems do not provide much support in an environment with changing user demands.
The proliferation of protocols and devices capable of communicating using only one or two standards has also created interoperability problems. Many pairs of devices cannot communicate effectively because of their use of different standards and of different portions of the radio frequency spectrum. The interoperability problem appears as though it will continue to grow, as advances in communications technologies lead to new standards with sufficient advantages to gain wide use despite the incompatibility of devices that use them with older devices.
SUMMARY OF THE INVENTION
Accordingly, there is a need in the art for communications devices that are readily modified, thereby providing telecommunications service providers with a facile method for deploying support for new standards, and capable of supporting multiple communications standards simultaneously, thereby improving interoperability and reducing the cost of deploying new standards that coexist with existing standards.
Further, there is a substantial need for wireless communication systems and devices capable of exchanging information via multiple communications standards simultaneously in order to act as a translator or patch between non-interoperable communications devices.
Thus it is one object of the invention to provide communication systems, including processing platforms, base stations, routers and patches, that more easily and completely service multiple air standards.
It is a further object of the invention to provide systems and methods to provide wireless communication infrastructure that is more cost efficient to upgrade and deploy.
Still other objects of the invention remain, and these objects will, in part, be set forth below and, in part, be obvious to one of ordinary skill in the art.
The systems and methods described herein provide wireless communications devices, including infrastructure such as base stations, patches and routers, for supporting wireless communications. The invention, in one aspect, consists of a collection of one or more processing elements that together carry out the functions necessary to exchange information over a plurality of wireless communications links. The systems and methods described herein combine two techniques: the use of multiple flexible processing elements, and a design in which each of the elements can carry out any part of the processing performed by the device, including without limitation the physical, MAC, link, network, transport, and presentation layer processing. Unlike previous communications devices, the systems and methods of the invention can easily and quickly change the communications standards supported, can support multiple communications standards at the same time, and can scale in a cost effective manner to support large numbers of communications channels simultaneously.
The systems and methods described herein shall be collectively referred to as a Multi-Layer Processing System, MLPS
12
for short, herein.
More specifically, the invention includes systems for implementing a communications process for communicating via a plurality of wireless communication protocols, comprising a cluster having two or more processing elements with a processor having a memory management unit capable of supporting an operating system that separates application-level and system-level address spaces. The processing units may be connected by a data network, such as an ethernet network, for supporting data communication among the processing elements. Application programs, which shall be understood as programs executing within the application-level space of the processing elements, collectively perform the signal processing of IF signals that are part of the physical layers of the wireless communication protocols.
The two or more processing elements may be arranged as a cluster and in one embodiment are selected from the group consisting of workstations, and workstation motherboards. Typically, the processing elements include a processor or CPU, memory, and I/O interface. The cluster may comprise locally arranged processing elements or processing element that are disposed at remote locations relative to each other.
The systems may further include programs for performing one or more of the physical, MAC, link, network, transport, or presentation layer processing functions for communicating via a wireless communication protocol. The processing of signals preferably occurs in real time, such that programs executing within application-level space for processing IF signals, process IF signals for transmission within a latency period corresponding to an associated wireless communication protocol.
The systems and methods described herein leverage the flexibility of the cluster architecture to allow the wireless communication systems described herein to support different wireless protocols or network standards, and to change the amount of support given to any particular standard, or to change the actual standards supported. To this end, the systems described herein may include a configuration module for selectively activating one of the application-level programs for processing signals according to a selected wireless communication protocol. The configuration module may include a process for removing support for a wireless communication protocol by sending a message to the executing application-level programs performing processing functions in support of the specified protocol. Such a message would typically include instructing for changing internal configuration into a configuration in which these functions are not carried out. The configuration module may also include a process for inc
Bose Vanu
Chapin John
Chiu Andrew
Phu Phuong
Ropes & Gray
Vanu, Inc.
LandOfFree
Systems and methods for wireless communications does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for wireless communications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for wireless communications will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3114113