Systems and methods for treating, diagnosing and predicting...

Data processing: artificial intelligence – Neural network – Learning task

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S407000

Reexamination Certificate

active

07467119

ABSTRACT:
Methods and systems are provided that use clinical information, molecular information and computer-generated morphometric information in a predictive model for predicting the occurrence (e.g., recurrence) of a medical condition, for example, cancer.

REFERENCES:
patent: 4097845 (1978-06-01), Bacus
patent: 5016283 (1991-05-01), Bacus et al.
patent: 5526258 (1996-06-01), Bacus
patent: 5701369 (1997-12-01), Moon et al.
patent: 5769074 (1998-06-01), Barnhill et al.
patent: 5850840 (1998-12-01), Cerami et al.
patent: 6025128 (2000-02-01), Veltri et al.
patent: 6059724 (2000-05-01), Campell et al.
patent: 6063026 (2000-05-01), Schauss et al.
patent: 6110968 (2000-08-01), Bucala et al.
patent: 6137899 (2000-10-01), Lee et al.
patent: 6317731 (2001-11-01), Luciano
patent: 6409664 (2002-06-01), Kattan et al.
patent: 6410043 (2002-06-01), Steiner et al.
patent: 6413533 (2002-07-01), Steiner et al.
patent: 6413535 (2002-07-01), Steiner et al.
patent: 6427141 (2002-07-01), Barnhill
patent: 6472415 (2002-10-01), Sovak et al.
patent: 6534266 (2003-03-01), Singer
patent: 6545034 (2003-04-01), Carson et al.
patent: 6545139 (2003-04-01), Thompson et al.
patent: 6611833 (2003-08-01), Johnson
patent: 6656122 (2003-12-01), Davidson et al.
patent: 6658395 (2003-12-01), Barnhill
patent: 6678669 (2004-01-01), Lapointe et al.
patent: 6692443 (2004-02-01), Crutchfield et al.
patent: 6699193 (2004-03-01), Crutchfield et al.
patent: 6723051 (2004-04-01), Davidson et al.
patent: 6740038 (2004-05-01), Davidson et al.
patent: 6789069 (2004-09-01), Barnhill et al.
patent: 6821767 (2004-11-01), French et al.
patent: 6828429 (2004-12-01), Srivastava et al.
patent: 6906320 (2005-06-01), Sachs et al.
patent: 6944602 (2005-09-01), Cristianini
patent: 6949342 (2005-09-01), Golub et al.
patent: 6955648 (2005-10-01), Mozayeni et al.
patent: 6995020 (2006-02-01), Capodieci et al.
patent: 7052908 (2006-05-01), Chang
patent: 7058509 (2006-06-01), Sohl, III et al.
patent: 7071303 (2006-07-01), Lin
patent: 7104958 (2006-09-01), Crutchfield et al.
patent: 7105560 (2006-09-01), Carson et al.
patent: 7105561 (2006-09-01), Carson et al.
patent: 7129262 (2006-10-01), Carson et al.
patent: 7151100 (2006-12-01), Carson et al.
patent: 7189752 (2007-03-01), Carson et al.
patent: 7211599 (2007-05-01), Carson et al.
patent: 7221171 (2007-05-01), Sohl, III et al.
patent: 7229774 (2007-06-01), Chinnaiyan et al.
patent: 7245748 (2007-07-01), Degani et al.
patent: 7272443 (2007-09-01), Min et al.
patent: 7321881 (2008-01-01), Saidi et al.
patent: 7332290 (2008-02-01), Rubin et al.
patent: 7361680 (2008-04-01), Carson et al.
patent: 7393921 (2008-07-01), Lin
patent: 2001/0036631 (2001-11-01), McGrath et al.
patent: 2002/0086347 (2002-07-01), Johnson et al.
patent: 2002/0165837 (2002-11-01), Zhang et al.
patent: 2002/0196964 (2002-12-01), Stone et al.
patent: 2003/0048931 (2003-03-01), Johnson et al.
patent: 2003/0172043 (2003-09-01), Guyon et al.
patent: 2003/0235816 (2003-12-01), Slawin et al.
patent: 2004/0157255 (2004-08-01), Agus et al.
patent: 2005/0071300 (2005-03-01), Bartlett et al.
patent: 2007/0099219 (2007-05-01), Teverovskiy et al.
Improved prediction of prostate cancer recurrence based on an automated tissue image analysis system Teverovskiy, M.; Kumar, V.; Junshui Ma; Kotsianti, A.; Verbel, D.; Tabesh, A.; Ho-Yuen Pang; Vengrenyuk, Y.; Fogarasi, S.; Saidi, O.; Biomedical Imaging: Macro to Nano, 2004. IEEE International Symposium on Apr. 15-18, 2004 pp. 257-260 vol. 1.
Censored Time Trees/spl trade/ for predicting time to PSA recurrence Zubek, V.B.; Verbel, D.; Machine Learning and Applications, 2005. Proceedings. Fourth International Conference on Dec. 15-17, 2005 p. 6 pp. Digital Object Identifier 10.1109/ICMLA.2005.14.
FDA Regulation of Implantable Sensors: Demonstrating Safety and Effectiveness for Marketing in the U.S. Smith, J.J.; Henderson, J.A.; Sensors Journal, IEEE vol. 8, Issue 1, Jan. 2008 p:52 - 56. Digital Object Identifier 10.1109/JSEN.2007.912548.
Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factor Klema, J.; Novakova, L.; Karel, F.; Stepankova, O.; Zelezny, F.; Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on vol. 38, Issue 1, Jan. 2008 pp.:3-15 Digital Object Identifier 10.1109/TSMCC.2007.906055.
SAPhyRA: Stream Analysis for Physiological Risk Assessment Apiletti, D.; Baralis, E.; Bruno, G.; Cerquitelli, T.; Computer-Based Medical Systems, 2007. CBMS '07. Twentieth IEEE International Symposium on Jun. 20-22, 2007 pp.: 193 - 198 Digital Object Identifier 10.11109/CBMS.2007.95.
Remote Sensing and GIS modeling applied to viral disease in Nakhonpathom Province, Thailand Andrianasolo, H.; Nakhapakorn, K.; Gonzalez, J.-P.; Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International vol. 5, Jul. 24-28, 2000 pp.: 1996-1998 vol. 5 Digital Object Identifier 10.1109/IGARSS.2000.858214.
Brain tissue classification of magnetic resonance images using partial vol. modeling Ruan, S.; Jaggi, C.; Xue, J.; Fadili, J; Bloyet, D.; Medical Imaging, IEEE Transactions on vol. 19, Issue 12, Dec. 2000 pp.: 1179-1187 Digital Object Identifier 10.1109/42.897810.
Progress in medical ultrasound exposimetry Harris, G.R.; Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on vol. 52, Issue 5, May 2005 ppp.-717-736 Digital Object Identifier 10.1109/TUFFC.2005.1503960.
Detection and analysis of fetal movements by ultrasonic multi-sensor Doppler (ACTIFOETUS) Kribeche, A.; Benderbous, S.; Tranquart, F.; Kouname, D,; Pourcelot, L.; Ultrasonics Symposium, 2004 IEEE vol. 2, Aug. 23-27, 2004 pp.1457-1460 vol. 2 Digital Object Identifier 10.11109/ULTSYM.2004.1418076.
Vol. Mesh Geneeration and Finite Element Analysis of Trabecular Bone Magnetic Resonance Images Alberich-Bayarri, A.; Moratal, D.; Marti-Bonmati, L.; Salmeron-Sanchez, M.; Valles-Lluch, A.; Nieto-Charques, L.; Rieta, J.J.; Engineering in Medicine and Biology Society, EMBS 29th Annual Intl Conference of the IEEE Aug. 22-26, 2007 pp. 1603-1606.
Computer detection of non-stationary T wave alternans using a new correlation method Burattini, L.; Zareba, W.; Couderc, J.P.; Titlebaum, E.L.; Moss, A.J.; Computers in Cardiology 1997 Sep. 7-10 1997 pp. 657-660 Digital Object Idetnifier 10.1109/CIC.1997.648136.
Airmed-cardio: a GSM and Internet services-based system for out-of-hospital follow up of cardiac patients Salvador, C.H.; Carrasco, M.P.; de Mingo, M.A.G.; Carrero, A.M.; Montes, J.M.; Martin, L.S.; Cavero, M.A.; Lozano, I.F.; Monteagudo, J.L.; Information Technology in Biomedicine, IEEE Transactions on vol. 9, Issue 1, Mar. 2005 pp. 73-85.
Unsupervised segmentation of three-dimensional brain images Ruan, S.; Fadili, J.; Jinghao Xue; Bloyet, D.; Pattern Recognition, 2000. Proceedings. 15th International Conference on vol. 3, Sep. 3-7, 2000 pp. 405-408 vol. 3 Digital Object Identifier 10.1109/ICPR.2000.903570.
Ablameyko S., et al. “From cell image segmentation to differential diagnosis of thyroid cancer”, Pattern Recognition, 2002. Proceedings. 16thInternational Conference on Quebec City, Que., Canada Aug. 11-15, 2002, Los Alamitos, CA USA, IEEE Compout. Soc, Us, vol. 1, Aug. 11, 2002, pp. 763-766.
M. Antonini, et al., “Image coding using wavelet transform,”IEEETrans. Image Process., vol. 1, pp. 205-220, 1992.
Baatz M., et al., “Multiresolution Segmentation—An Optimization Approach for High Quality Multi-scale Image Segmentation,” InAngewandte Geographische InformationsverarbeitungXII, Strobl, J., Blaschke, T., Griesebner, G. (eds.), Wichmann—Verlag, Heidelberg, pp. 12-23, 2000.
E. Biganzoli, et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach.Stat Med, 1998.
S.F. Brown, et al. On the use of artificial neural networks for the analysis of survival data.IEEE Trans. on Neural Networks, 8(5):1071-1077, 1997.
H.B. Burke, et al. Artificial neural networks improve the accuracy of cancer survival prediction.Cancer, 97(4): pp. 857-862, 1997.
Br

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for treating, diagnosing and predicting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for treating, diagnosing and predicting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for treating, diagnosing and predicting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4031145

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.