Systems and methods for sealing in site-isolated reactors

Coating apparatus – Gas or vapor deposition – Multizone chamber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S733000

Reexamination Certificate

active

07955436

ABSTRACT:
Substrate processing systems and methods are described for site-isolated processing of substrates. The processing systems include numerous site-isolated reactors (SIRs). The processing systems include a reactor block having a cell array that includes numerous SIRs. A sleeve is coupled to an interior of each of the SIRs. The sleeve includes a compliance device configured to dynamically control a vertical position of the sleeve in the SIR. A sealing system is configured to provide a seal between a region of a substrate and the interior of each of the SIRs. The processing system can include numerous modules that comprise one or more site-isolated reactors (SIRs) configured for one or more of molecular self-assembly and combinatorial processing of substrates.

REFERENCES:
patent: 4743954 (1988-05-01), Brown
patent: 5356756 (1994-10-01), Cavicchi et al.
patent: 5603351 (1997-02-01), Cherukuri et al.
patent: 5985356 (1999-11-01), Schultz et al.
patent: 6004617 (1999-12-01), Schultz et al.
patent: 6040193 (2000-03-01), Winkler et al.
patent: 6045671 (2000-04-01), Wu et al.
patent: 6063633 (2000-05-01), Willson, III
patent: 6187164 (2001-02-01), Warren et al.
patent: 6287977 (2001-09-01), Hashim et al.
patent: 6306658 (2001-10-01), Turner et al.
patent: 6342733 (2002-01-01), Hu et al.
patent: 6344084 (2002-02-01), Koinuma et al.
patent: 6364956 (2002-04-01), Wang et al.
patent: 6420178 (2002-07-01), LaGraff et al.
patent: 6468806 (2002-10-01), MacFarland et al.
patent: 6503834 (2003-01-01), Chen et al.
patent: 6607977 (2003-08-01), Rozbicki et al.
patent: 6632285 (2003-10-01), Wang et al.
patent: 6646345 (2003-11-01), Sambucetti et al.
patent: 6750152 (2004-06-01), Christenson et al.
patent: 6756109 (2004-06-01), Warren et al.
patent: 6758951 (2004-07-01), Giaquinta et al.
patent: 6818110 (2004-11-01), Warren et al.
patent: 6821909 (2004-11-01), Ramanathan et al.
patent: 6821910 (2004-11-01), Adomaitis et al.
patent: 6828096 (2004-12-01), Boussie et al.
patent: 6830663 (2004-12-01), Wang et al.
patent: 6849462 (2005-02-01), Winkler et al.
patent: 6858527 (2005-02-01), Gracias
patent: 6872534 (2005-03-01), Boussie et al.
patent: 6896783 (2005-05-01), Schunk et al.
patent: 6902934 (2005-06-01), Bergh et al.
patent: 6905958 (2005-06-01), Gracias et al.
patent: 6911129 (2005-06-01), Li
patent: 6919275 (2005-07-01), Chiang et al.
patent: 6975032 (2005-12-01), Chen et al.
patent: 7008871 (2006-03-01), Andricacos et al.
patent: 7022606 (2006-04-01), Mikami et al.
patent: 7077992 (2006-07-01), Sreenivasan et al.
patent: 7084060 (2006-08-01), Furukawa et al.
patent: 2002/0079487 (2002-06-01), Ramanath et al.
patent: 2002/0105081 (2002-08-01), Ramanath et al.
patent: 2003/0032198 (2003-02-01), Lugmair et al.
patent: 2003/0082587 (2003-05-01), Seul et al.
patent: 2003/0141018 (2003-07-01), Stevens et al.
patent: 2004/0023302 (2004-02-01), Archibald et al.
patent: 2004/0092032 (2004-05-01), Winkler et al.
patent: 2004/0180506 (2004-09-01), Ramanath et al.
patent: 2004/0203192 (2004-10-01), Gracias
patent: 2004/0245214 (2004-12-01), Katakabe et al.
patent: 2005/0011434 (2005-01-01), Couillard et al.
patent: 2005/0020058 (2005-01-01), Gracias et al.
patent: 2005/0032100 (2005-02-01), Heath et al.
patent: 2005/0064251 (2005-03-01), Li et al.
patent: 2005/0081785 (2005-04-01), Lubomirsky et al.
patent: 2005/0090103 (2005-04-01), Gracias
patent: 2005/0091931 (2005-05-01), Gracias
patent: 2005/0106762 (2005-05-01), Chakrapani et al.
patent: 2005/0263066 (2005-12-01), Lubomirsky et al.
patent: 2005/0287573 (2005-12-01), Stafslien et al.
patent: 2006/0258128 (2006-11-01), Nunan et al.
patent: 2007/0029189 (2007-02-01), Zach
patent: WO 03/034484 (2003-04-01), None
patent: WO 03/058671 (2003-07-01), None
Jousseaume V., “Pore sealing of a porous dielectric by using a thin PECVD a-SiC:H Conformal Liner”, Journal of the Electrochemical Society 152 (10), Aug. 22, 2005, pp. F156-F161.
Satyanarayana Sri, “Damage mechanisms in porous low-k integration”, Semiconductor International, Jun. 1, 2005, pp. 1-8.
Peters Laura, Is pore sealing key to ultralow-k adoption?', Semiconductor International, Oct. 1, 2005, pp. 1-5.
Rossnagel Stephen, “The latest on Ru-Cu interconnect technology”, Solid State Technology, Feb. 2005; pp. O1-O4.
De Gans Berend-Jan, “Sector spin coating for fast preparation of polymer libraries”, J. Comb. Chem 2005, 7, pp. 952-957.
Guerin Samuel, “Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries”, J. Comb. Chem. 2006, 8, pp. 66-73.
Pohm Arthur V., “High-density very efficient magnetic film memory arrays”, IEEE Transactions on Magnetics, vol. MAG-5, No. 3, Sep. 1969, pp. 408-412.
Takeuchi I., “Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries”, Applied Physics Letters, vol. 73, No. 7, Aug. 17, 1998, pp. 894-896.
Chang H., “Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications”, Applied Physics Letters, vol. 72, No. 17, Apr. 27, 1998, pp. 2185-2187.
Chang K.-S., “Exploration of artificial multiferroic thin-film heterostructures using composition spreads”, Applied Physics Letters, vol. 84, No. 16, Apr. 19, 2004; pp. 3091-3093.
Van Bavel Mieke, “Introducing Cu and low-k dielectrics; process consequences and reliability issues”, Future Fab International, vol. 16, Feb. 3, 2004, 7 pages.
J. O. Choo et al. “Development of a spatially controllable chemical vapor deposition reactor with combinatorial processing capabilities,” Review of Scientific Instruments 76, 2005, p. 062217-1-062217-10.
James S. Cooper et al. “Plasma sputtering system for deposition of thin film combinatorial libraries,” Review of Scientific Instruments 76, 2005, pp. 062221-1-062221-7.
Thomas Erichsen et al. “Combinatorial microelectrochemistry: Development and evaluation of an electrochemical robotic system,” Review of Scientific Instruments 76, 2005, pp. 062204-1-062204-11.
Yuji Matsumoto et al., “Combinatorial Laser Molecular Beam Epitaxy (MBE) Growth of Mg-Zn-O Alloy for Band Gap Engineering,” Japanese Journal of Applied Physics, Jun. 15, 1999, pp. 603-605.
Jae-Ouk Choo et al., “Simulation-Based Design and Experimental Evaluation of a Spatially Controllable CVD Reactor,” AiChE Journal vol. 51, No. 2, Feb. 2005, pp. 572-584.
Ted Sun, “Combinatorial Screening and Optimization of Luminescent Materials and Organic Light Emitting Devices,” MRS Bulletin, Apr. 2002, pp. 309-315.
Qi Wang, “Combinatorial hot-wire CVD approach to exploring thin-film Si materials and devices,” www.sciencedirect.com, 2003, pp. 78-82.
Ichiro Takeuchi et al., “Combinatorial Synthesis and Evaluation of Functional Inorganic Material Using Thin-Film Techniques,” MRS Bulletin, Apr. 2002, pp. 301-308.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for sealing in site-isolated reactors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for sealing in site-isolated reactors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for sealing in site-isolated reactors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2739993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.