Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2001-10-08
2003-07-29
Pham, Toan (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S870010, C379S032010
Reexamination Certificate
active
06600423
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to systems and methods for remotely controlling a cable pressure monitoring unit and, more specifically, to systems and methods for remotely starting or restarting a cable pressure monitoring unit operable for monitoring the air pressure within a pressurized cable route, such as a telecommunications cable route.
BACKGROUND
Each year, telecommunications companies spend large amounts of money pumping air into their cables and pipes which carry and enable the transmission of voice and data information. This low-humidity air creates positive pressure in the cables, enabling them to resist standing water, moisture damage, and the like. Such standing water and moisture damage may lead to noise on the line, data transmission errors, and, ultimately, complete cable failure.
The cables which make up a telecommunications network typically include a sheath made of a water-resistant or waterproof material, such as lead or polyethylene. These sheaths typically encompass wires, such as copper wires, and an insulation material which separates individual conductor pairs. This insulation material may be, for example, paper, pulp, or plastic.
Exposure of the interior of a cable to water or moisture may lead to a number of problems. For example, exposure of the interior of a cable to moisture may destroy the insulating characteristics of the paper or pulp. If cracks develop in the sheath of a cable or the sheath of a cable is sliced, water may enter the cable and electrolysis may occur, resulting in faulted conductor pairs. Thus, the basic premise of cable pressurization is to keep the pressure within a cable in excess of the pressure which could be exerted by standing water. To this end, telecommunications companies and related industry associations have established minimum air pressure standards for underground, direct-buried, and aerial cables. For example, a minimum air pressure of six (6) pounds per square inch (PSI) may be required for underground cables, a minimum air pressure of three (3) PSI may be required for direct-buried cables, and a minimum air pressure of one (1) PSI may be required for aerial cables, as they are less at risk from water damage.
The air pumped into pressurized telecommunications cables originates from a plurality of air compressors, typically located in a company's “central offices” or wire centers. These air compressors are preferably coupled with dryers or dehumidifiers operable for removing residual moisture from the air. Thus, the air compressors act as compression dehydrators. Because a pressurized cable route may include a plurality of discrete sections of cable, each potentially thousands of feet long, the air pressure in each cable route tends to decrease as the distance from a central office, and a given air compressor, increases. This pressure drop is due, in part, to the presence of inevitable leaks in the route. Therefore, air pressure is typically re-established along a cable route by running an air pipe along the route and introducing air at a plurality of fixed points. The air pipe is connected to a plurality of manifolds which distribute air to the cables at, for example, each utility hole, making these connections relatively easy to maintain.
In order to maintain a pressurized cable route, a plurality of air pressure monitoring devices are placed at strategic points along the route (for example, at each air compressor or at each manifold). These air pressure monitoring devices typically include standard pressure transducers which utilize variations in electrical resistance to detect changes in air pressure. The air pressure monitoring devices measure the amount of air compression provided by a given air compressor or within a given cable volume at a given time in PSI. The air pressure monitoring devices are linked to control panels and/or cable pressure monitoring units in the various central offices or in a management facility so that readings may be taken by maintenance technicians at predetermined times. If the air pressure for a given air pressure monitoring device drops below a predetermined value, an air pressure alarm is tripped. A maintenance technician may then be dispatched to repair the affected air compressor, cable, air pipe, manifold, and the like.
One problem faced by telecommunications companies is that their air compressors and their cable pressure monitoring units may lock-up or shut down due to power fluctuations caused by generator problems or tests, lightning strikes, corrupted databases, and the like. In such cases, the air compressors are typically remotely restarted. Each air compressor is operatively connected to an automated transfer system (ATS), including a microprocessor and software operable for turning-off and turning-on the air compressor in succession. The ATS is typically accessible from a networked computer. In order to restart the cable pressure monitoring units, however, a maintenance technician must be dispatched to perform a manual restart. In a case such as a storm, access to a given cable pressure monitoring unit may be limited and a maintenance technician's safety may be compromised. Additionally, given a plurality of cable pressure monitoring unit failures during a given period of time and the high cost of maintenance technician time, such manual restarts may be expensive in the aggregate. Thus, what is needed are systems and methods for remotely starting or restarting a cable
BRIEF SUMMARY
The present invention provides systems and methods for remotely starting or restarting a cable pressure monitoring unit operable for monitoring the air pressure within a pressurized cable route, such as a telecommunications cable route.
In one embodiment, a system for remotely starting a cable pressure monitoring unit includes a remote computer operable for generating and transmitting a command signal directing the cable pressure monitoring unit to start, an automated transfer system operable for receiving the command signal directing the cable pressure monitoring unit to start, and a computer network operable for communicating the command signal from the remote computer to the automated transfer system. The system also includes a cable pressure monitoring unit start module disposed within the automated transfer system operable for generating and transmitting an operation signal directing the cable pressure monitoring unit to start, a relay operable for receiving the operation signal directing the cable pressure monitoring unit to start and starting the cable pressure monitoring unit, and a plurality of wires operable for communicating the operation signal from the cable pressure monitoring unit start module to the relay.
In another embodiment, a method for remotely starting a cable pressure monitoring unit includes generating a command signal directing the cable pressure monitoring unit to start using a remote computer, communicating the command signal from the remote computer to an automated transfer system, and receiving the command signal using the automated transfer system. The method also includes generating an operation signal directing the cable pressure monitoring unit to start using a cable pressure monitoring unit start module disposed within the automated transfer system, communicating the operation signal from the cable pressure monitoring unit start module to a relay, receiving the operation signal using the relay, and starting the cable pressure monitoring unit.
Advantageously, the systems and methods of the present invention make it possible to remotely start or restart a cable pressure monitoring unit so that maintenance technicians do not have to be put at risk in the field performing manual starts or restarts and maintenance technician expenses may be saved.
REFERENCES:
patent: 3598930 (1971-08-01), Desnoes
patent: 3944914 (1976-03-01), Simmonds
patent: 4480251 (1984-10-01), McNaughton et al.
patent: 4570037 (1986-02-01), Baker
patent: 4675896 (1987-06-01), Young
patent: 4728948 (1988-03-01), Fields
patent: 4764232 (1988-08-0
Ashcraft Philip B.
Rozier Ronnie L.
Smith Steven W.
BellSouth Intellectual Property Corporation
Merchant & Gould
Pham Toan
LandOfFree
Systems and methods for remotely controlling a cable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for remotely controlling a cable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for remotely controlling a cable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061425