Systems and methods for performing prosthetic or therapeutic...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S040000, C607S041000

Reexamination Certificate

active

06587728

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to systems and methods for providing function to otherwise paralyzed muscles.
BACKGROUND OF THE INVENTION
Functional Electrical Stimulation or Function Neuromuscular Stimulation, in short hand, typically refer to prosthetic systems and methods that restore function to muscles in the body that are otherwise paralyzed due to lack of neuromuscular stimulation, e.g., due to spinal cord injury, stroke, or disease. These conditions can break or otherwise disrupt the path or paths by which electrical signals generated by the brain normally travel to neuromuscular groups, to stimulate coordinated muscle contraction patterns. As a result, even though the nerves and muscles are intact, no electrical stimulation is received from the spinal cord, and the associated muscles do not function. Such systems and methods replace the disrupted, physiologic electrical paths, and restore function to the still intact muscles and nerves. Such systems and methods are known, e.g., to restore finger-grasp functions to muscles in the arm and hand, or to restore bladder and bowel control to muscles in the bladder, urethral sphincter, and bowel or to restore a standing function to muscles in the hip and thigh.
Neuromuscular stimulation can perform therapeutic functions, as well. These therapeutic functions provide, e.g., exercise to muscle, or pain relief for stroke rehabilitation, or other surgical speciality applications, including shoulder subluxation, gait training, etc.
While existing systems and methods provide remarkable benefits to individuals requiring neuromuscular stimulation, many quality of life issues still remain. For example, existing systems are function specific, meaning that a given device performs a single, dedicated stimulation function. An individual requiring or desiring different stimulation functions is required to manipulate different function specific stimulation systems. Such systems are not capable of receiving control inputs from different sources, or of transmitting stimulation outputs to different stimulation assemblies. Concurrent performance of different stimulation functions is thereby made virtually impossible.
Furthermore, the controllers for such function specific systems are, by today's standards, relatively large and awkward to manipulate and transport. They are also reliant upon external battery packs that are themselves relatively large and awkward to transport and recharge.
While the controller can be programmed to meet the individual's specific stimulation needs, the programming requires a trained technical support person with a host computer that is physically linked by cable to the controller. The individual requiring neuromuscular stimulation actually has little day to day control over the operation of the controller, other than to turn it on or turn it off. The individual is not able to modify operating parameters affecting his/her day-to-day life.
It is time that systems and methods for providing neuromuscular stimulation address not only specific prosthetic or therapeutic objections, but also address the quality of life of the individual require neuromuscular stimulation.
SUMMARY OF THE INVENTION
The invention provides improved systems and methods for providing prosthetic or therapeutic neuromuscular stimulation.
One aspect of the invention provides neuromuscular stimulation systems and methods that are readily transported by the user. In one embodiment, the systems and methods employ a controller that incorporates within a housing an output device that can be coupled to an electrode and a microprocessor that is coupled to the output device. The microprocessor includes a processing element operative to generate a signal pattern to an electrode to control at least one neuromuscular stimulation function. According to this aspect of the invention, a battery is also carried by the housing and coupled to the microprocessor to power the processing element. In one embodiment, the housing and battery are sized and configured, when coupled to the microprocessor, to fit within a hand of an individual or to otherwise be carried by an individual.
The battery is desirably rechargeable. Desirably, the battery is removable from the housing for recharging and can be recharged only when removed from the housing.
Another aspect of the invention provides a controller to provide functional neuromuscular stimulation. The controller comprises a housing and an output device carried by the housing that can be coupled to an electrode. The controller also includes a signal source to generate a control signal and an input device carried by the housing to receive the control signal generated by the signal source. A microprocessor is carried by the housing and is coupled to the output device and the input device. The microprocessor includes a processing element operative to generate a signal pattern to an electrode to control at least one neuromuscular stimulation function in response to a control signal received from the input device. The controller further includes a battery carried by the housing and coupled to the microprocessor to power the processing element. According to this aspect of the invention, the control signal generated by the signal source comprises a periodic succession of pulses to conserve battery life.
Another aspect of the invention provides a controller to provide functional neuromuscular stimulation. The controller comprises a housing and an output device carried by the housing that can be coupled to an electrode. A microprocessor is carried by the housing and is coupled to the output device. The microprocessor includes a processing element operative to generate a signal pattern to an electrode to control at least one neuromuscular stimulation function. The controller also includes a battery carried by the housing and coupled to the microprocessor to power the processing element. According to this aspect of the invention, the signal pattern generated by the processing element comprises command signals transmitted in a periodic succession of energy pulses to conserve battery life.
In one embodiment, each command signal includes a sequence of periodic pulses to identify an electrode channel, or a set stimulation amplitude command for the identified electrode channel, or a set stimulation duration command for the identified electrode channel, or combinations thereof.
In one arrangement, the sequence of periodic pulses comprises an energy on period, an energy off period, and gaps between successive energy on and energy off periods. In this arrangement, by number and sequence of gaps, a code is expressed that identifies an electrode channel, or a set stimulation amplitude command for the identified electrode, or a set stimulation duration command for the identified electrode, or combinations thereof.
In one embodiment, the periodic succession of energy pulses comprises modulated radio frequency waves.
In use, the systems and methods can be used, e.g., to affect at least one motor function, or to affect a bladder or bowel control function, or to affect an erection control function, or to affect combinations thereof. The systems and methods can be used to affect at least two neuromuscular stimulation functions, either concurrently or independently.
The systems and methods that embody the features of the various aspects of the invention provide effective neuromuscular stimulation to meet a host of prosthetic or therapeutic objections. The systems and methods also provide convenience of operation, flexibility to meet different user-selected requirements, and transportability and ease of manipulation, that enhance the quality of life of the individual that requires chronic neuromuscular stimulation.
Other features and advantages of the inventions are set forth in the following specification and attached drawings.


REFERENCES:
patent: 4413314 (1983-11-01), Slater et al.
patent: 4942514 (1990-07-01), Miyagaki et al.
patent: 4990258 (1991-02-01), Bjare et al.
patent: 5167229 (1992-12-01), Peckham et al.
patent: 524743

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for performing prosthetic or therapeutic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for performing prosthetic or therapeutic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for performing prosthetic or therapeutic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3007017

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.