Systems and methods for package defect detection

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S501000, C438S014000, C438S015000, C438S016000

Reexamination Certificate

active

06590409

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to package-level failure analysis and, more particularly, to defect localization in packaged integrated circuit subsystems.
2. Description of the Related Art
The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
Until recently, the ongoing quest of the semiconductor industry was to improve the performance of integrated circuits (“ICs”) before the integrated circuit was placed into a package and hermetically sealed from the environment. However, advancements in the performance in integrated circuits may now be limited by the technology by which the circuits are packaged. Improving packaging of integrated circuits may involve increasing the package density (i.e., pin-out) and improving the package performance (i.e., electrical conductance and signal speed).
Device failure or performance impairment can occur if a trace conductor, or group of trace conductors, is not properly conducting electrical signals due to a defect in the trace conductor. There are two basic types of defects that may occur when trace conductors are formed. Missing material defects may occur when a conductive structure is formed which is missing some portion of its conductive material. Such a defect may cause the formation of an “open” structure, or break in the conductive pathway of the trace conductor, and is indicated by a measurement of large electrical resistance across the trace conductor. There are several ways an open can occur, either at the terminal sites or along the length of a trace conductor. For instance, the solder balls or solder bumps may have been improperly attached or may have experienced critical mechanical strain due to thermal expansion or package mishandling. There may also be micro-cracks, or other breaks, in the terminals or trace conductors within the substrate. There could be manufacturing defects such as, incomplete vias, missing vias, or misaligned vias between the substrate layers. Further, electromigration could cause cracks to form in the solder joints or in the trace conductor pathways within the substrate. Similarly, an extra material defect may occur when a conductive structure includes material extending beyond the predefined boundaries. Such material may extend to another conductive structure causing an electrical “short” to be formed between the two conductive structures. This type of defect may be indicated by a very low resistance measurement between two or more different trace conductors. An example of a defect that causes an electrical short includes dendritic branching between trace conductors.
To test and locate the exact source of an electrical discontinuity of a trace conductor requires the destructive dismantling of the package and is typically a final step in failure analysis of such devices. A trace conductor, or group of trace conductors, associated with a failing I/O pin will first be pinpointed as a source of electrical pathway discontinuity by preliminary failure analysis testing. Subsequently, localization of the defect may be performed by one of several techniques, such as optical inspection, electrical testing, or other non-destructive evaluations.
One such method for isolating defects in package substrates involves optical inspection. Once a defect is located visually, it is often necessary to test the electrical continuity of the trace by mechanical probing. This is accomplished by first removing the semiconductor chip so as to expose the solder bumps encapsulated in the underfill material beneath the IC. An electrical testing device such as a multi-meter can then be used to measure the resistance of the trace conductor by connecting the two probe wires of the meter on either end of the trace conductor. Typically, a probe wire is soldered to the trace conductor solder ball terminal on the underside of the board. The other probe wire may have a probe needle attached for making electrical contact with the exposed solder bump at the upper surface of the board. However, problems may arise using this testing method. The defect may be heat-cured during the solder attachment of the probe wire to the solder ball if the defect is physically located at or in proximity to the solder ball. Furthermore, when a probe wire is soldered to a trace conductor solder ball, undue tension on the bottom probe wire may be caused during the parallel lapping process (used to remove subsequent layers of the substrate), and may pull the solder ball away from the substrate or simply cause the wire or joint to break.
As stated above, package-level failure analysis has traditionally been performed by optical inspection followed by mechanical probing. Conventional optical inspection methods for package defects involve direct bright and dark field microscope optical inspection. However, the trace length of I/O lines, which may be as long as 9 mm, complicates the task of detecting micro-cracks by optical inspection. Furthermore, even if a micro-crack is detected, its causality may not always be certain. Direct inspection of I/O traces and vias using Scanning Electron Microscopy (SEM) is impossible due to surface charging, which may hinder detection of micro-cracks. In addition, even though a defect may be located by optical inspection, it may not be an electrical failure. Thus, mechanical probing is typically performed to test the electrical continuity of the trace conductors.
Accordingly, as I/O routing becomes increasingly dense in multi-layer substrate packages, a method of pinpointing defects may be needed to augment and eventually supplant current techniques. Therefore, it may be beneficial to provide a method for charged particle beam-based voltage contrast imaging for localization and isolation of package-level substrate defects.
SUMMARY OF THE INVENTION
The above outlined problems may be in large part addressed by a voltage-induced contrast imaging technique adapted to supply an electrical signal to a semiconductor package substrate while imaging the substrate with a charged particle beam-based imaging system. The semiconductor package may be a Ball Grid Array (BGA) package designed to receive an integrated circuit. The integrated circuit may be inverted and coupled to the semiconductor package using flip-chip connection techniques. The substrate may be single or multi-layered. The package substrate may include trace conductors arranged between electrical terminals, which may be formed on the package substrate surface. The electrical terminals of the package substrate may be coupled to I/O pins of an integrated circuit by attachment solder bumps.
A test may be conducted prior to removing the IC from the surface of the package substrate. Such testing may include transmitting an electrical pulse along a trace conductor on the surface of the package substrate. Electrical resistance may be measured across the trace conductor to determine whether a defect resides on the surface of the substrate or on an inner layer of the substrate. A failing I/O pin of a semiconductor package may be determined as a source of electrical pathway discontinuity due to a defect in a corresponding trace conductor or group of trace conductors. The package may be prepared for preliminary failure analysis by removing the overlying integrated circuit to expose attachment solder bumps configured within underfill material. If the substrate is a multi-layer substrate, upper layers may be sequentially removed. Measuring the electrical continuity between the trace conductors associated with a failing I/O pin may indicate a defect on a layer of the package substrate.
The package substrate may be mounted in a test fixture. The test fixture may be adapted to expose a backside surface of the substrate to a moveable probe pin attached to a lower part of the fixture. The probe pin may contact an electrical terminal on the back surface of the substrate while a probe needle contacts the corresponding electrical terminal of the trace conductor on a front side surface of the s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for package defect detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for package defect detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for package defect detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056774

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.