Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – For fault location
Reexamination Certificate
2003-05-30
2004-03-02
Le, N. (Department: 2858)
Electricity: measuring and testing
Fault detecting in electric circuits and of electric components
For fault location
C324S600000, C379S024000, C379S030000, C375S257000
Reexamination Certificate
active
06700387
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to impedance synthesis. More specifically, the present invention relates to the synthesis of user specified source or load impedances using digital processing.
2. The Relevant Technology
Ordinarily, circuits are designed such that the load impedance is much greater than the impedance of the source that is driving the load. Otherwise, the load impedance may have an adverse effect on the source voltage by causing the output voltage of the source to drop. This undesirable result is related to the finite value of the source impedance. Transmission lines, however, are an exception to this general rule. In the case of transmission lines, it is desirable that the load impedance match the impedance of the transmission line for several reasons.
In a basic form, a transmission line is two or more parallel conductors which connect a source to a load. The load presents an impedance to the transmission line and the transmission line presents a characteristic impedance, which is usually a combination of the source impedance and the impedance of the transmission line, to the load. When the transmission line is attached to a load having an impedance equal to the characteristic impedance of the transmission line, the power in the signal transferred to the load is maximized and the signal is not reflected back to the source. These benefits are important for many different applications. If the power transfer is not maximized, it is possible that the connecting device will be unable to properly interpret the signal. If signal reflections are present on the transmission line, then the signal becomes difficult to demodulate and additional circuitry is required to remove the reflections or echoes.
One common example of a transmission line which is used for moderate frequencies is a parallel conductor, which is frequently used in telephone networks. The parallel conductors of a telephone network are often referred to as the tip and ring. Thus, the tip and ring comprise the transmission line and the load impedance may be embodied as a telephone, modem or other device capable of connecting to the telephone network.
The telephone network specifies the characteristic impedance of the transmission line which must be matched by a connecting device in order to fully transfer power and avoid signal reflection. However, the impedance specified by the telephone network is usually only an approximation of the actual impedance, which results from such variables as: the variations in the length of the transmission lines to the connecting device from the central office; various wiring topologies within an intermediary installation such as a series of parallel transmission lines within a business or other structure; and intrinsic variations in the transmission lines themselves. The actual characteristic impedance presented by the telephone network is difficult to precisely match and is usually only approximated.
With regard to telephone networks, the problem is complicated by the fact that telephone networks across the world specify different characteristic impedances. In this situation, it is feasible that a device functioning perfectly in one telephone network will encounter difficulty in another telephone network. Because telephones, modems and other telephonic devices are being used world wide, it is necessary to enable a telephonic device to function in any telephone network environment.
While many devices are capable of operating in different networks, the result is not always satisfactory. One solution is to characterize the impedances of the various telephone networks into groups and physically place more than one impedance in the device. The appropriate impedance is then selected using appropriate switching technologies such as relays or field effect transistor (FET) switches. This method has several disadvantages. First, control circuitry must be employed to control the relays and switches, which is not a trivial task because of the high voltages which may be present on many transmission lines. Because of the high voltages, the components used for the switches and relays can be large and expensive and must be rated to withstand the high voltages which can be present on a transmission line.
While placing multiple impedances on a device to permit a device to function in more network, the physical impedances physically placed on the device are designed to approximate, rather than match, the characteristic impedances that may be encountered in different telephone networks, which results in less than optimal power being transferred to the load as well as signal reflections back to the signal source. Also, many devices, such as modems, have limited printed circuit board surface area on which to place these additional circuit elements and a relatively large number of discrete circuit components such as resistors, operational amplifiers and capacitors can require significant surface area. Further, the combined tolerances of the passive and active circuit components may result in a large variance from the desired impedance.
The problem of properly terminating a transmission line has also been addressed in terms of impedance synthesis. However, these attempts have involved the use of discrete circuit components such as resistors and operational amplifiers. These methods, however, are limited to synthesizing real or resistive impedances. Recursive digital filters have also been utilized, but this approach introduces incidental shunting impedances, whose effects must be eliminated. In addition, digital filters are capable of introducing unacceptable delays.
BRIEF SUMMARY OF THE INVENTION
While many devices are capable of operating in different networks, the result is not always satisfactory. One solution is to characterize the impedances of the various telephone networks into groups and physically place more than one impedance in the device. The appropriate impedance is then selected using appropriate switching technologies such as relays or field effect transistor (FET) switches. This method has several disadvantages. First, control circuitry must be employed to control the relays and switches, which is not a trivial task because of the high voltages which may be present on many transmission lines. Because of the high voltages, the components used for the switches and relays can be large and expensive and must be rated to withstand the high voltages which can be present on a transmission line.
While placing multiple impedances on a device to permit a device to function in more network, the physical impedances physically placed on the device are designed to approximate, rather than match, the characteristic impedances that may be encountered in different telephone networks, which results in less than optimal power being transferred to the load as well as signal reflections back to the signal source. Also, many devices, such as modems, have limited printed circuit board surface area on which to place these additional circuit elements and a relatively large number of discrete circuit components such as resistors, operational amplifiers and capacitors can require significant surface area. Further, the combined tolerances of the passive and active circuit components may result in a large variance from the desired impedance.
The problem of properly terminating a transmission line has also been addressed in terms of impedance synthesis. However, these attempts have involved the use of discrete circuit components such as resistors and operational amplifiers. These methods, however, are limited to synthesizing real or resistive impedances. Recursive digital filters have also been utilized, but this approach introduces incidental shunting impedances, whose effects must be eliminated. In addition, digital filters are capable of introducing unacceptable delays.
REFERENCES:
patent: 2978542 (1961-04-01), Huxtable
patent: 4017750 (1977-04-01), Voorman
patent: 4061883 (1977-12-01), Chambers, Jr.
patent: 4161633 (1979-07-01), Treiber
patent: 4
Evans John
Messerly Shayne
Poulis Spiro
3Com Corporation
Le N.
Nguyen Vincent Q.
Workman Nydegger
LandOfFree
Systems and methods for impedance synthesis does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for impedance synthesis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for impedance synthesis will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3248511