Chemistry: analytical and immunological testing – Automated chemical analysis
Reexamination Certificate
1997-09-24
2001-11-27
Warden, Jill (Department: 1743)
Chemistry: analytical and immunological testing
Automated chemical analysis
C436S043000, C436S047000, C436S049000, C422S063000, C422S065000, C422S105000, C422S105000, C414S277000, C414S281000, C414S807000
Reexamination Certificate
active
06323035
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates generally to the field of device handling and manipulation, and particularly to the handling and manipulation of multi-well plates. In one particular aspect, the invention provides for the transport of multi-well plates to precise and known locations at various processing or evaluation stations.
The use of multi-well plates to facilitate the performance of various chemical and biological procedures has become widely accepted. Such multi-well plates are typically rectangular in geometry and have a two dimensional array of wells. For example, one common multi-well plate design has an 8 by 12 array of wells.
To accommodate the performance of various procedures, the wells of such plates are configured to receive various chemicals or substances. One common procedure is the performance of assays where various chemicals or substances are introduced into the wells and any reactions are evaluated. One type of assay evaluation may proceed by placing the plate above a camera to detect an emitted signal from the wells.
Hence, when using such multi-well plates, it is often desirable to efficiently deliver and/or remove various chemicals or substances into or from the wells. This often requires the plate to be moved to various pieces of processing equipment for filling or removal. Further, the plates may also need to be transported to evaluation equipment for detection or other evaluation.
When introducing or removing fluids or substances into or from the wells, and when evaluating the substances within the wells, the wells typically need to be aligned with distal tips, detection devices and the like. However, since various pieces of equipment may be needed to complete a procedure, each time the plate is moved to a different piece of equipment, the plate will need to be properly oriented according to the specifications of the given piece of equipment. For example, many types of fluid delivery equipment include a stage on which the plate is placed. Often a robot is employed to grasp the plate and move the plate to the stage. However, such robots typically have a pair of grasping fingers which grasp the plate in an arbitrary manner and then place the plate on the stage.
Hence, once on the stage and removed from the robot, the dispensing tips will need to be aligned with the wells in the plate. Such a system is often burdensome and time consuming. Moreover, as it becomes more desirable to increase the numbers of wells in the plate while reducing their size, it becomes more difficult to precisely align the wells with various pieces of equipment. For example, many types of filling equipment are provided with 96 dispensing tips. If an 864 well plate is placed on a stage which can move only in the vertical direction, it is difficult, if not impossible, for the 96 dispensing tips to fill all of the 864 wells while the plate remains fixed on the stage.
Hence, it would be desirable to provide systems, devices and methods to facilitate the transport of multi-well plates between various pieces of equipment in a manner such that the wells may be efficiently accessed or evaluated.
SUMMARY OF THE INVENTION
The invention provides exemplary systems, devices and methods for handling multi-well plates. In one exemplary embodiment, the invention provides a system for handling a plate having a plurality of wells and comprises a robot having a base member and at least one arm. The arm includes a grasping mechanism which is adapted to grasp the plate. Further, the grasping mechanism is configured to receive the plate in a repeatable and known location such that the location of each well relative to the grasping mechanism is known by the robot.
The robot of the invention is particularly useful in combination with a plurality of stations which are positioned at known locations relative to the robot. In this way, a processor that is associated with the robot may be configured to control movement of the robot to place the plate at predetermined locations at the stations. For instance, some of the stations may include processing equipment having an array of delivery lines to allow fluids or substances to be introduced into the wells when the plate is at the predetermined locations. In this way, the plate may remain attached to the robot and be precisely aligned with the various delivery lines during a given procedure.
As one example, the plate may include 864 wells that are to be filled by a piece of equipment having 96 dispensing tips. Since the location of the wells is known to the robot relative to the dispensing tips, the robot may move the plate to nine different locations to allow all of the 864 wells to be filled. Once filling is finished, the robot may move the plate to another station where other procedures may be performed in a similar manner.
In one particular aspect, the arm comprises a shaft, an elbow attached to the shaft, and a linkage pivotally attached to the elbow. With such a configuration, the grasping mechanism is operably attached to the linkage. In another aspect, the shaft is rotatable relative to the base member and is also movable in a vertical direction. The linkage is pivotable relative to the elbow to move the grasping mechanism radially outward from the base member.
In one particularly preferable aspect, the grasping mechanism comprises a frame member having edges which are adapted to frame at least a portion of a periphery of the plate in a repeatable and predictable manner so that the location of the wells of the plate relative to the frame member is known when the plate is received into the frame member. The grasping mechanism further includes a securing mechanism for securing the plate to the frame member when the plate is received within the frame member.
In one exemplary aspect, the system further includes a rack having a plurality of patterned shelves for housing a plurality of plates. With such a configuration, the frame member is provided with a patterned opening to allow the grasping mechanism to grasp a plate from the rack by positioning the frame member below one of the shelves having the desired plate and upwardly moving the frame member until the frame member lifts the plate from the shelf. During the upward movement of the frame member, the shelf passes through the patterned opening. To replace a plate, the frame member is lowered until the patterned opening passes over the patterned shelf, with the patterned shelf lifting the plate from the frame member.
The securing mechanism preferably comprises a clamping arm that is pivotally attached to the frame member and which is adapted to engage a portion of the periphery of the plate. Such a clamping arm is particularly useful when the plate is generally rectangular in geometry. With such a plate geometry, the edges of the frame member are preferably configured to engage at least two sides of the plate while the clamping arm engages a corner of the plate that is located at an intersection of the other two sides of the plate. The clamping arm thus secures the plate against the edges of the frame member.
In one particular aspect, at least some of the edges of the frame member which are adapted to engage the plate are inwardly tapered to assist in securing the plate to the frame member. Similarly, an edge of the clamping arm may also be tapered. Such tapering serves to prevent vertical movement of the plate when clamped to the frame member.
In still another aspect, an attachment member is operably attached to the frame member to facilitate attachment to the arm of the robot. In yet another aspect, a translation mechanism is provided for axially translating the frame member. In this way, the grasping mechanism may be laterally moved relative to the arm of the robot.
The invention further provides an exemplary method for handling a plate having a plurality of wells. According to the method, a robot is provided having a base member and at least one arm which includes a grasping mechanism. A plate having a plurality of wells is grasped with the grasping mechanism such that the location
Brown, Jr. Albert William
Kedar Haim
Bex Kathryn
Glaxo Wellcome Inc.
Townsend and Townsend / and Crew LLP
Warden Jill
LandOfFree
Systems and methods for handling and manipulating multi-well... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for handling and manipulating multi-well..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for handling and manipulating multi-well... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2604496