Systems and methods for electrosurgical treatment of tissue...

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S114000

Reexamination Certificate

active

06322549

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of electrosurgery, and more particularly to surgical devices and methods which employ high frequency electrical energy to treat tissue in regions of the head and neck, such as the brain and spinal cord.
Cerebrovascular diseases are those in which brain diseases occur secondary to the pathological disorder of blood vessels (usually arteries) or the blood supply. This pathological disorder has a variety of mechanisms, including vessel occlusion by thrombus or embolus, rupture or disease of the blood vessel wall and disturbances in the normal properties of blood flowing through the brain. Regardless of the mechanism, the resultant effect on the brain is either ischaemia/infarction or haemorrhagic disruption (i.e., stroke).
Medical treatment for cerebrovascular disease has included anticoagulant therapy and the use of thrombolytic agents. The effectiveness of anticoagulant agents is uncertain and the risk of recurrent embolic infarction is high. Similarly, thrombolytic agents pose a relatively high risk of intracranial hemorrhage.
Surgical treatment for vascular diseases has included a number of catheter-based approaches, such as balloon angioplasty and endartectomy. Endartectomy procedures typically involve introducing a catheter having a cup-shaped rotating cutter into the vascular system to sever and capture at least a portion of the occlusive material. Other interventional techniques includes laser ablation, mechanical abrasion, chemical dissolution, hot-tipped catheters, drill-tipped catheters and the like. While promising, these techniques have a few drawbacks. For some of these techniques (e.g., balloon angioplasty), it is often difficult to advance the distal end of the catheter through the stenosed region in extremely narrow vessels, such as those encountered in the brain. Under these circumstances, it may be necessary to at least partially recanalize the occlusion before the catheter procedure can begin. Other techniques (e.g., hot-tipped or drill-tipped catheters) rely on very aggressive treatment of the occlusive material to open up a passage. Such aggressive techniques can expose the blood vessel wall to significant injury, for example, vessel perforation.
The present invention is also concerned with the removal of benign or malignant tumors in the head and neck, such as neuromas, meninges, neuroepithelial tumors, lymphomas, metastatic tumors and the like. Unfortunately, conventional techniques for removing such tumors, such as electrosurgery, powered instruments and lasers, are not very precise, and they often cause damage or necrosis to surrounding or underlying body structures, which can be extremely problematic in the brain. Moreover, it is often difficult to differentiate between the target tumor tissue, and other neighboring body structures, such as cartilage, bone or nerves. In particular, many tumors in the head and neck are located closely adjacent to nerves. Nerve injury can lead to muscle paralysis, pain, exaggerated reflexes, loss of bladder control, impaired cough reflexes, spasticity and other conditions. Thus, the surgeon utilizing conventional devices must be extremely careful to avoid damaging the nerves that extend through the target site.
Further, conventional techniques for removing such tumors generally result in the production of smoke in the surgical setting, termed an electrosurgical or laser plume, which can spread intact, viable bacterial or viral particles from the tumor or lesion to the surgical team or to other portions of the patient's body. Numerous studies have confirmed that viable cells, such as papillomavirus, HIV, cancer cells, and the like, are spread to other portions of the patient's body during these tumor removal procedures. In conventional RF devices, for example, a high frequency voltage is applied between two electrodes in either a monopolar or bipolar mode to create intense heat at the target site that causes the inner cellular fluid to explode, producing a cutting effect along the path of the device. This cutting effect generally results in the production of smoke, or an electrosurgical plume, which can spread bacterial or viral particles from the tissue to the surgical team or to other portions of the patient's body. In addition, the tissue is parted along the pathway of evaporated cellular fluid, inducing undesirable collateral tissue damage in regions surrounding the target tissue site.
SUMMARY OF THE INVENTION
The present invention provides systems, apparatus and methods for selectively applying electrical energy to structures in the brain and spinal cord. The systems and methods of the present invention are particularly useful for treating cerebrovascular diseases, such as vessel occlusion, or for the volumetric removal or ablation of intracranial tumors or Arteriovenous Malformations (AVM).
The method of the present invention comprises positioning an electrosurgical probe or catheter adjacent the target site so that one or more electrode terminal(s) and one or more return electrode(s) are brought into at least partial contact or close proximity with a body structure within the patient's head or neck, such as tumor tissue or an occlusion within a blood vessel. High frequency voltage is then applied between the electrode terminal(s) and return electrode(s) to volumetrically remove or ablate at least a portion of the body structure in situ. The present invention is particularly useful for volumetrically removing atheromatous or thrombotic occlusions in blood vessels, or benign or malignant tumors in the brain.
In a specific aspect of the invention, a method is provided for volumetrically removing occlusive media from blood vessels within the brain to treat cerebrovascular diseases. In this method, a catheter is advanced intraluminally to the target site within the vessel such that one or more electrode terminal(s) are positioned adjacent to or in contact with the vessel occlusion. In a preferred embodiment, an electrically conducting fluid is directed to the target site so that the fluid is located between the electrode terminal(s) and one or more return electrode(s) positioned proximal to the electrode terminal(s) to provide a current flow path from the electrode terminal(s) to the return electrode(s). High frequency voltage is applied between the electrode terminal(s) and the return electrode(s) to volumetrically remove or ablate at least a portion of the occlusive media.
In another aspect of the invention, a method is provided for removing or ablating intracranial tumors or AVMs from a patient's brain. An electrosurgical instrument (i.e., catheter or probe) is guided to the target site in a conventional manner, i.e., percutaneously, transluminally or using other minimally invasive or open surgery techniques. The target site in the brain may be charted with a variety of imaging techniques, such as computerized tomography (CT) scanning, magnetic resonance imaging (MRI), ultrasound, angiography, radionucleotide imaging, electroencephalography (EEG) and the like. In conjunction with one of these imaging procedures, typically CT or MRI, the present invention may also use compatible stereotactic systems for guiding the instrument to the target location. Once the distal end of the instrument is positioned adjacent the target site, an electrically conducting fluid is directed thereto to provide the current flow path between the electrode terminal(s) and the return electrode. The high frequency voltage is sufficient to volumetrically remove the tumor while minimizing the collateral damage to surrounding tissue and/or nerves within the brain. In specific embodiments, the high frequency voltage is sufficient to effect the dissociation or disintegration of organic molecules into non-viable atoms and molecules. Specifically, the present invention converts the solid tissue cells into non-condensable gases that are no longer intact or viable, and thus, not capable of seeding cancerous cells to other portions of the body struct

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for electrosurgical treatment of tissue... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for electrosurgical treatment of tissue..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for electrosurgical treatment of tissue... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603803

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.