Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2001-04-03
2004-02-03
Casler, Brian L. (Department: 3763)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S463000, C600S467000, C604S103010, C604S164010, C604S164100, C604S164110, C604S164130, C604S529000
Reexamination Certificate
active
06685648
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to systems and methods for delivering substances into a body, more particularly to systems and methods that use the cardiovascular system as a conduit to deliver drugs, such as therapeutic drugs, genes, growth factors and the like, directly to selected tissue regions within the body, and most particularly to systems and methods that deliver drugs from the venous system transvascularly to selected remote tissue regions.
BACKGROUND
It is often desirable to deliver drugs into a patient's body to treat medical conditions. In particular, a variety of drug therapies are available for treating the coronary system, either alone or in combination with more invasive procedures. Such therapies may include delivering substances, such as nitroglycerin, epinepharin, or lydocaine, endocardially or into the pericardial space to treat the coronary system. In addition, heparin, hirudin, ReoPro™ or other anti-thrombotic compounds may be infused into blood vessels associated with the coronary system, such as occluded coronary arteries, or elsewhere in the cardiovascular system. More recently, gene therapy, e.g. introducing genetic material, and growth factor therapy, e.g. introducing proteins, cells or vectors including angiogenic growth factors, have been demonstrated to provide potential benefits in treating ischemic heart tissue and other regions of the coronary system, for example, by stimulating growth of neovascular conduits, which may evolve into new blood vessels.
In current medical therapy, one method of delivering such drugs involves percutaneously introducing an infusion catheter into the patient's cardiovascular system. A distal portion of the catheter is directed to a desired endovascular location, for example into a coronary artery, and a drug is infused into the artery at a location reachable intraluminally. The catheter may include a lumen extending between its proximal and distal ends, the distal end having one or more outlet ports. A source of the drug, such as a syringe, may be connected to the proximal end and the drug delivered through the lumen and outlet port(s) into the desired location.
For example, a “bolus,” i.e. a relatively large single dose of a drug, may be delivered using an infusion catheter into an artery, which may be absorbed by the arterial wall, the surrounding tissue, and/or may be carried by blood flow to regions further downstream from the delivery location. Alternatively, the drug may be infused continuously or intermittently into the artery for an extended period of time.
The infusion catheter often includes a porous perfusion balloon on its distal end, the interior of which communicates with the outlet port(s) and lumen in the catheter. Pores or holes in the balloon may be arranged to direct the drug from the balloon towards the arterial wall to improve penetration into the arterial wall and attempt to localize delivery. In addition, the infusion catheter may be provided with an electrode and/or a heating element on or in the balloon to cause electroporation or to heat the surrounding tissue to further improve localized delivery.
Some devices try to enhance localized delivery of drugs using ionophoresis. A first electrode may be provided within a perfusion balloon, and a second electrode provided on an external region of the patient's body near the artery. When direct current is applied between the electrodes, a drug carried by an electrically charged compound may be directed along the path of current flow from the internal electrode towards the external electrode in an attempt to improve penetration of the drug into the arterial wall and surrounding tissue.
As an alternative to perfusion balloons and/or infusion catheters, a drug may be embedded in or deposited on a catheter, e.g. in the catheter wall, the wall of a non-porous balloon on the catheter, and/or a coating on the catheter. After the distal end is directed to a desired location, the drug may be delivered into an artery, for example, by ionophoresis similar to that described above or by simply allowing the drug to dissolve within the artery.
In an alternative to delivering a bolus of drugs, it is often desirable to provide sustained delivery of a drug within the cardiovascular system. For example, a pair of occlusion balloons disposed along the length of a catheter may be provided on an infusion catheter that may be directed endovascularly to a desired location within an artery. The balloons may be inflated to isolate a section of the artery between them, and a drug may be delivered into the isolated section in an attempt to provide sustained delivery to the isolated section. The balloons are then deflated, and the catheter removed from the body.
Drug delivery devices may also be implanted within an artery to provide sustained delivery. For example, U.S. Pat. No. 5,628,784 issued to Strecker discloses an expandable annular sleeve that may be deployed within an artery. A small quantity of drugs may be introduced between the sleeve wall and the surrounding arterial wall to directly contact the arterial wall, where they may be absorbed over an extended period of time. PCT Publication No. WO 95/01138 discloses a porous ceramic sleeve that may be implanted directly in tissue, such as in bone marrow or a surgically created pouch. The sleeve includes drugs within a cell culture or matrix in the sleeve, which may, for example, be dispersed in the pores of the sleeve or be provided in a cylindrical insert.
In addition, a number of extravascular methods have also been suggested. For example, drugs may be injected directly into a desired tissue region, typically by accessing the region through a chest incision. Alternatively, a polymer gel or drug-soaked sponge may be attached to the outside of a vessel or to a portion of the endocardium to be absorbed by the contacted region. In addition, the pericardial space may have substances injected directly into it, for example by accessing the pericardial sac through a chest incision. Such methods may provide either single dose or sustained delivery of drugs to the heart.
One of the problems often associated with existing methods is dilution or “wash-out” of the drug during delivery. Dilution may substantially reduce the effectiveness of a therapy by preventing sufficient quantities of the drug from reaching a desired region. For example, during endovascular delivery using an infusion catheter, the drug may be diluted as it travels through the arterial wall or may be carried downstream through the artery to other regions within the coronary system and/or elsewhere in the body.
The volume of drug may be increased to offset dilution concerns, but this may exacerbate concerns about undesired dissemination of the drug. For example, certain therapeutic drugs, genetic material and growth factors may have undesired global side effects. Releasing a drug into the blood stream may allow it to be carried throughout the coronary system or elsewhere in the body where it may have significant adverse effects. Similar adverse effects may result from pericardial delivery, in which a drug may be absorbed throughout the coronary system, rather than only in a desired local region.
Further, many conventional methods are unable to provide effective sustained delivery, which may be important to the success of certain treatments, such as gene or growth factor therapy, where it may be desirable to maintain a drug in a desired region for hours, days or even longer. Occlusion systems, such as the dual occlusion balloon catheter, or the implantable sleeves described above, may be able to isolate a region of an artery for some sustained treatments.
Such occlusion devices, however, may introduce additional risks associated with obstructing flow within the coronary system for extended periods of time. In particular, if the arterial system is occluded for more than short periods of time during treatment, substantial damage may occur, for example, ischemia and possibly infarction of tissue downstream from the occlud
Colloton Robert C.
Evard Philip C.
Flaherty J. Christopher
MacAulay Patrick E.
Macfarlane K. Angela
Casler Brian L.
Cohen and Sakaguchi LLP
English William A.
Thissell Jeremy
Transvascular, Inc.
LandOfFree
Systems and methods for delivering drugs to selected... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for delivering drugs to selected..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for delivering drugs to selected... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3315687