Systems and methods for controlling flows with electrical...

Aeronautics and astronautics – Aircraft sustentation – Sustaining airfoils

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

07744039

ABSTRACT:
Systems and methods for controlling flow with electrical pulses are disclosed. An aircraft system in accordance with one embodiment includes an aerodynamic body having a flow surface exposed to an adjacent air stream, and a flow control assembly that includes a first electrode positioned at least proximate to the flow surface and a second electrode positioned proximate to and spaced apart from the first electrode. A dielectric material can be positioned between the first and second electrodes, and a controller can be coupled to at least one of the electrodes, with the controller programmed with instructions to direct air-ionizing pulses to the electrode, and provide a generally steady-state signal to the electrode during intervals between the pulses.

REFERENCES:
patent: 4749151 (1988-06-01), Ball et al.
patent: 5828684 (1998-10-01), Van de Walle
patent: 5917286 (1999-06-01), Scholl et al.
patent: 5920923 (1999-07-01), Jillette
patent: 6276636 (2001-08-01), Krastel
patent: 6518692 (2003-02-01), Schoenbach et al.
patent: 6528947 (2003-03-01), Chen et al.
patent: 2004/0195462 (2004-10-01), Malmuth et al.
patent: 2008/0096045 (2008-04-01), Fairbourn et al.
patent: 2008/0290218 (2008-11-01), Schwimley et al.
patent: 1953382 (2008-08-01), None
patent: 2005133953 (2005-11-01), None
patent: WO-9410032 (1994-05-01), None
patent: WO-2007054774 (2007-05-01), None
U.S. Appl. No. 12/166,199, filed Jul. 1, 2008, Schwimley et al.
U.S. Appl. No. 12/339,674, filed Dec. 19, 2008, Silkey et al.
“Atmospheric Absorption in UV Band,” http://www.globalwarmingart.com/wiki/Image:Atmospheric—Transmission—png, Jun. 2007, 4 pages.
“Deep UV Lasers 224 and 248 nm,” http://www.photonsystems.com/pdfs/duv-lasersource-rev2.pdf, 2 pages.
“FQCW 266 Diode Pumped Continuous Wave Solid State Laser ” www.crylas.de, 2008, 2 pages.
A. A. Maslov, B. Yu. Zanin, A. A. Sideorenko, B.V Postnikov, V. P. Fomichev, A.D. Budovsky and N. Malmuth, “Two-Channel Spark Discharge for Flow Control on a Body of Revolution,” AIAA Paper No. 2005-040, Reno NV, Jan. 10-13, 2005.
Chen J., Park, S., Fan, Z., Eden, J. G., Liu, C., “Development and Characterization of Micromachined Hollow Cathode Plasma Display Devices,” Journal of Microelectromechanical Systems, vol. 11, No. 5, Oct. 2002, pp. 536-543.
D.V. Roupassov,I.N. Zavyalov, A.Yu. Starikov, “Boundary Layer Separation Plasma Control Using Low-Temperature Non-Equilibrium Plasma of Gas Discharge,” 44-rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, paper AIAA-2006-373, 2006.
J. Reece Roth and Xin Dai, “Optimization of the Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device,” AIAA Paper No. 2006-1203, Reno NV, Jan. 9-12, 2006.
Oh, Hye-Keun, “Process Study of a 200 nm Laser Pattern Generator,” Journal of the Korean Physical Society, vol. 41 No. 6, Dec. 2002, pp. 839-842.
Sidorenko, A.A., Boris, Y.Z., Boris, V.P., Budovsky, A.D., “Pulsed Discharge Actuators for Rectangular Wing Separation Control,” American Institute of Aeronautics and Astronautics, 2007, pp. 1-11.
Zavyalov I.N., Roupassov D.V., Starikovsii A. Yu., Saddoughi S.G., “Boundary Layer Control” by Gas Discharge Plasma. EUCASS, Moscow, 2005.
“IV.30—Drift Step Recovery Diodes?” http://www.avtechpulse.com/faq/html/IV.30/ accessed Mar. 5, 2009, 1 page.
“MHE- Pulse Systems Group,” http:/www.moose-hill.com/pulse.htm, accessed Mar. 5, 2009, 4 pages.
U.S. Appl. No. 11/403,252, Silkey et al.
Anderson, R., “Barrier Discharge Plasma Actuators for Dry and Humid Atmospheres”, Paper Aiaa-2006-0369, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006.
Boeuf, J.P. et al., “Electrohydrodynaic force and aerodynamic flow acceleration in surface dielectric barrier discharge,” Journal of Applied Physics, vol. 97, 2005, 103307-1-103307-10.
Corke, T., “Plasma Flow Control Optimized Airfoil”, Paper AIAA-2006-1208, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006.
Corke, T.C. et al., “Application of Weakly-Ionized Plasmas as Wing Flow-Control Devices,” Paper AIAA 2002-350, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan. 14-17, 2002.
Enloe, C.L. et al., “Mechanisms ad Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology”, AIAA Journal, vol. 42, o. 3, 2004, pp. 589-594.
Enloe, C.L. et al., “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects”, AIAA Journal, vol. 42, No. 3, 2004, pp. 595-604.
Gaitonde, D., “A Coupled Approach for 3-D RF-Based Flow Control Simulations”, Paper AIAA-2006-1205, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan 9-12, 2006.
Likhanskii, A. et al., “Modeling of Interaction Between Weakly Ionized ear-Surface Plasmas and Gas Flow”, Paper AIAA-206-1204, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006.
Likhanskii, A.V., et al., Optimization of Dielectric Barrier Discharge Plasma Actuators Driven by Repetitive Nanosecond Pulses, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8-11, 2007, pp. 13.
Loeb, L.B., “Ionizing waves of potential gradients”, Science 148, p. 1417, 1965.
Opaits, D.F. et al., “Plasma Control of Boundary Layer Using Low-Temperature Non-Equilibrium Plasma of Gas Discharge,” Paper AIAA 2005-1180, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10-13, 2005.
Orlov, D. M., et al., “Numerical Simulation of Aerodynamic Plasma Actuator Effects,” Paper AIAA 2005-1083, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10-13, 2005.
Post, M. et al., “Flow Control with Single Dielectric Barrier Plasma Actuator,” Paper AIAA 2005-4630, 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario, Jun. 6-9, 2005.
Post, M.L. et al., “Separation Control on High Angle or Attach Airfoil Using Plasma Actuators,” AIAA Journal, vol. 42, o. 11, 2004, pp. 2177-2184.
Roth, J.R., “Optimization of Aerodynamic Plasma Actuator as an Electrohydrodynamic (EHD) Electrical Device”, Paper AIAA-2006-1203, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 9-12, 2006.
Roy, S. et al., “Modeling surface discharge effects of atmospheric RF on gas flow control,” Paper AIAA 2005-160, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 10-13, 2005.
Roy, S., “Flow actuation using radio frequency in partially ionized collisional plasmas,” Applied Physics Letters, vol. 86, 2005, pp. 101502-1-101502-3.
Singh, K.P. et al., “Simulation of an asymmetric single dielectric barrier plasma actuator,” Journal of Applied Physics, vol. 98, 2005, 083303-1-083303-7.
Corke, T.C., and Post, M.L., “Overview of Plasma Flow Control: Concepts, Optimization, and Applications,” AIAA Paper No. 2005-563, Reno NV, Jan. 10-13, 2005.
Roth, J.R., Sherman D. M. and Wilkinson S. P.: “Boundary Layer Flow Control with a One Atmosphere Uniform Flow Discharge Surface Plasma”. AIAA Paper 98-0328, Proc of the 36th AIAA Aerospace Sciences Meeting & Exhibit Reno, NV, Jan. 12-15, 1998.
Wu, J.-Z., Lu, X.-Y., Denny, A.G., Fan, M., and Wu, J.-M, “Post Stall Flow Control on an Airfoil by Local Unsteady Forcing,” J. Fluid Mech., 371, 21-58, 1998.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for controlling flows with electrical... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for controlling flows with electrical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for controlling flows with electrical... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4188024

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.