Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Including contaminant removal or mitigation
Reexamination Certificate
2001-03-23
2002-10-22
Niebling, John F. (Department: 2812)
Semiconductor device manufacturing: process
Packaging or treatment of packaged semiconductor
Including contaminant removal or mitigation
C438S125000, C438S127000, C438S612000, C134S001100, C134S001200, C134S001300
Reexamination Certificate
active
06468833
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Brief Description of the Invention
The present invention relates to methods and systems for generating substantially dry atmospheric plasma which effectively can remove metal oxides, moisture and other undesirable compounds from metal and other surfaces just prior to packaging of electronic components.
2. Related Art
Preventing the failure of some integrated circuit (IC) packages due to the trapping of moisture or oxides between the package material, whether epoxy, BT Resin, polyamide, metal, or other material, and the IC. In addition, creating a clean activated surface in order to enhance the adhesion, wetability, flow, or bonding properties of the adhesive, molding compound, or metal bonding application. When any of these problems are not solved, the package can ‘popcorn’ or crack during the application of reflow soldering which is done at high temperature (>180 C) or experience general problems in reliability for bonding. In addition, there also may be some benefit from treatment of the entire IC, leadframe, etc. prior to encapsulation. This can help activate the surface and remove any oxide, H
2
O, or other reducible compounds. This can prevent adhesion problems and encourage consistent spreading of the encapsulant material. Lastly, the advent of lead-free technology will also force this temperature to be higher during reflow and thus increase even further the stringent requirements to make a good package that won't crack or fail.
SUMMARY OF THE INVENTION
By following a prescribed format for the use of a plasma system, treatment of the surfaces involved in the die attach processes can be improved. The basic steps involved are: complete deoxidization and treatment of a surface by use of a plasma process, including the activation of the surface while removing H
2
O and other reducible compounds prior to application of the glue, solder, or adhesion material to the surface whether plastic, metal, or other material. This is then followed by application of the glue, solder, or other material and subsequent bonding of the IC or package to the package or PCB respectively. In addition, the entire IC and lead frame structure can be treated prior to encapsulation in order to activate the surfaces and to remove oxides, H
2
O, or other reducible compounds. Exposure to the plasma just prior to the encapsulation step will remove impurities and improve wetability and flow as well as prevent delamination. Lastly, before making any metal to metal bonds, as in wire bonding for example, the plasma can be used to treat the surfaces in order to remove oxides, organic impurities, or other reducible material just prior to bonding. The advent of copper wire bonding will make this step more important so as to improve bond strength.
In accordance with the present invention systems and methods for forming an atmospheric, low temperature plasma greatly improves the IC packaging process by cleaning surfaces prior to encapsulation. This allows for strong plastic to metal and strong plastic to semiconductor material bonds to be formed and, when preferred, for successful copper to copper bond formation.
One aspect of the invention is a system for effecting bond region modification in electronic components comprising encapsulant materials, the system comprising: (a) a subsystem in which one or more electronic components are adapted to have an encapsulant applied and bonded thereto; (b) a source of initial gas; and (c) an electrical discharge apparatus connected to said source of initial gas for producing a primary gas from said initial gas, the primary gas comprising a plurality of unstable or excited species, the primary gas adapted to contact at least a portion of encapsulant bond regions of the electrical components in the sub-system and thereby effect encapsulant bond region modification prior to encapsulation.
Preferred are systems wherein the source of initial gas comprises a source of an inert gas, a reducing gas, and/or an oxidizing gas. Preferably, the initial gas has less than 1% water vapor, more preferably less than 500 ppm water vapor, and more preferably less than 50 ppm water vapor, and even more preferably less than 1 ppb water vapor. This limitation on the amount of water vapor in the initial gas helps to reduce, preferably eliminate, the tendency of the primary has to include species that might recombine to form water vapor after exposing the electronic component to primary gas.
Particularly preferred are those systems in accordance with the invention comprising means to maintain the primary gas mixture at a pressure ranging from about 0.1×10
5
Pa to about 3.0×10
5
Pa. Other preferred systems in accordance with the first aspect of the invention are those which include at least two electrical discharge apparatus, preferably in series relationship, wherein the apparatus employ same or different initial gas.
Also preferred are systems in accordance with the first aspect of the invention wherein two of the electrical discharge apparatus are in parallel, and either the same or different initial gas is employed. When two or more electrical discharge apparatus are employed, the apparatus may be same or different, and may use same or different power levels.
Other preferred systems in accordance with the first aspect are those which include a hood which encloses the conveying sub-system and primary gas, in preferably air-tight fashion.
A second aspect of the invention is a system for encapsulating one or more bonded metallic bond regions of a first electronic component bonded to one or more metallic bond regions of a second electronic component to form one or more metallic bonded regions, the system comprising: (a) a conveying sub-system upon which one or more metallically bonded, non-encapsulated electronic components travel from a metallic bonding station, electronic components having at least one metallic bond region; (b) a source of initial gas; (c) an electrical discharge apparatus for producing a primary gas from said initial gas, the primary gas comprising a plurality of unstable or excited species, the primary gas adapted to contact at least some of the regions of the electrical components adapted to be encapsulated and thereby effect encapsulant bond region modification; (d) an encapsulation station downstream of the bonding station, wherein the metallic bonded, non-encapsulated electrical components are encapsulated. Preferred systems in accordance with this aspect of the invention are systems wherein the encapsulation system is connected to the inerting station so as to avoid as much as possible the chance of moisture (water vapor and moisture are used interchangeably herein) adhering to or otherwise becoming a component of the non-encapsulated electronic component prior to encapsulation. Also preferred are systems in accordance with this aspect further comprising an annealing station connected to the bonding station and down stream of the bonding station.
Preferred are systems in accordance with this aspect wherein the electrical discharge apparatus comprises means to maintain the primary gas at a pressure ranging from about 0.1×10
5
Pa to about 3.0×10
5
Pa, such as a hood or tunnel, preferably air-tight. Preferred are systems comprising sources of inert, reducing, and oxidizing gases to make an initial gas mixture having at most 1% water vapor, preferably less than 500 ppm water vapor, more preferably less than 50 ppm water vapor, and even more preferably less than 1 ppb water vapor (volume basis).
Particularly preferred are those system embodiments of the first and second aspects of the invention equipped to de-oxide copper-containing metals and “pure” copper metal connections, as further discussed herein.
A third aspect of the invention is a method for encapsulating at least some metallic bonded regions in electronic components comprising metallic bonded regions, the method comprising transporting an electronic component having at least one metallic bonded region through a primary gas atmosphere comprising unstable
Carsac Claude
Sindzingre Thierry
Uner Jason R.
American Air Liquide Inc.
Niebling John F.
Russell Linda K.
Zarneke David A.
LandOfFree
Systems and methods for application of substantially dry... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for application of substantially dry..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for application of substantially dry... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2986108