Surgery – Diagnostic testing – Respiratory
Reexamination Certificate
2001-04-17
2003-04-22
Hindenburg, Max F. (Department: 3736)
Surgery
Diagnostic testing
Respiratory
C600S388000, C600S389000, C600S301000, C600S508000, C600S509000, C600S481000
Reexamination Certificate
active
06551252
ABSTRACT:
1. FIELD OF THE INVENTION
The present invention relates to the field of ambulatory and non-invasive monitoring of an individual's physiological parameters. In particular, the invention relates to a monitoring apparatus with an improved apparel worn by a monitored individual, the apparel having attached sensors for monitoring parameters reflecting pulmonary function, or parameters reflecting cardiac function, or parameters reflecting the function of other organ systems. The invention also includes systems for receiving, storing, and processing physiological-parameter data, and for making it available to the individual and to health care providers.
2. BACKGROUND OF THE INVENTION
In the following, the term “plethysmography” (and its derivative words) means measurement of a cross-sectional area of the body, such as a cross-sectional area of the chest or of the abdomen, or a body part, such as a cross-sectional area of the neck or of an arm. (This meaning is somewhat more limited than is standard in the medical arts.) Further, the phrase “inductive plethysmography” means herein plethysmographic measurements which depend on inductance determinations.
Measurement of pulmonary and cardiac physiological parameters by means of inductive plethysmography is known. For example, many measurement methods and apparatus are disclosed in the following U.S. patents, the entire disclosures of which are incorporated herein, in their entireties, by reference, for all purposes.
(1) The '872 patent: U.S. Pat. No. 4,308,872, issued Jan. 5, 1982 and titled “Method and Apparatus for Monitoring Respiration,” discloses a method and apparatus for monitoring respiration volumes by measuring variations in the patient's chest cross sectional area, or variations in both chest and abdomen cross sectional areas, each area being measured by determining the inductance of an extensible electrical conductor closely looped around the body, and the measurements being calibrated by measuring the area variations for a few breaths while directly measuring corresponding volumes of breath, preferably while the patient assumes at least two body positions, for example sitting and supine.
(2) The '534 patent: U.S. Pat. No. 4,373,534, issued Feb. 15, 1983 and titled “Method and Apparatus for Calibrating Respiration Monitoring System,” discloses methods and systems in which respiration volume is determined by weighting signals representing abdominal and chest cross-sectional areas, where the weighting factors are determined by a procedure involving measuring respiration volume by an alternate measuring apparatus along with unweighted chest and abdomen signals, the measurements occurring for a first series of breaths based with a first relative chest and abdominal contribution and for a second series of breaths based on a second relative chest and abdominal contribution.
(3) The '252 patent: U.S. Pat. No. 4,452,252, issued Jun. 5, 1984 and titled “Non-invasive Method for Monitoring Cardiopulmonary Parameters,” discloses a method for monitoring cardiopulmonary events by inductive plethysmographic measurement of a cross-sectional area of the neck, and further discloses a method for monitoring mouth volume by inductive plethysmographic measurement of a cross-sectional area of the head in a plane which extends through the mouth.
(4) The '015 patent: U.S. Pat. No. 4,456,015, issued Jun. 26, 1984 and titled “Non-invasive Method for Semiquantitative Measurement of Neck Volume Changes,” discloses a method of plethysmographic measurement of a subject's neck volume by providing an extensible conductor closely circling the neck and, first, calibrated against cross-sectional area so that neck volume may be determined from the conductor's inductance, and also, second, calibrated against invasively-measured intrapleural pressure so that the intrapleural pressure may also be determined from the conductor's inductance, and also so that intrapleural pressure may also be obtained from measured neck volume.
(5) The '407 patent: U.S. Pat. No. 4,648,407, issued Mar. 10, 1987 and titled “Method for Detecting and Differentiating Central and Obstructive Apneas in Newborns,” disclosing methods for detecting the presence and origin of apnea in newborns by concurrently monitoring relative movement of the cranial bones (which have been found to move with respiration as a function of intrapleural pressure), preferably by a surface inductive plethysmographic transducer, and nasal ventilation, preferably by a nasal cannula, thermistor, thermocouple or CO
2
sensor, wherein absence of changes in both cranial bone movement and respiratory air flow at the nose indicates of the presence of central apnea, while absence of nasal air flow accompanied by continuing cranial bone movements indicates of obstructive apnea.
(6) The '962 patent: U.S. Pat. No. 4,777,962, issued Oct. 18, 1988 and titled “Method and Apparatus for Distinguishing Central Obstructive and Mixed Apneas by External Monitoring Devices Which Measure Rib Cage and Abdominal Compartmental Excursions During Respiration,” discloses an apparatus and method for distinguishing between different types of apneic episodes. The method includes measuring a new index, Total Compartmental Displacement/Tidal Volume (TCD/VT), and measuring the phase relation between the abdominal and rib cage contributions to total respiration volume, wherein an episode is classified as central, obstructive or mixed based on the value of TCD/VT and the phase relation.
(7) The '640 patent: U.S. Pat. No. 4,807,640, issued Feb. 28, 1989 and titled “Stretchable Band-type Transducer Particularly Suited for Respiration Monitoring Apparatus,” discloses an improved, low-cost stretchable band incorporating a conductor for disposition about the human torso or other three dimensional object, and particularly intended for use with respiration monitoring by means of inductive plethysmography, a method for making the band, which method is suitable to mass production techniques, and an improved enclosure housing circuitry releasably connected to the conductor in the band when the band is incorporated in respiration monitoring apparatus.
(8) The '473 patent: U.S. Pat. No. 4,815,473, issued Mar. 28, 1989 and titled “Method and Apparatus for Monitoring Respiration,” discloses a method and apparatus for monitoring respiration volumes by inductive plethysmographic measurement of variations in a patient's chest cross sectional area, or preferably, variations in both chest and abdomen areas during breathing, and a method for calibrating such an apparatus by measuring cross-sectional area variations for a few breaths while directly measuring corresponding volumes of breath, preferably while the patient assumes at least two body positions, for example sitting and supine.
***(9) The '766 patent: U.S. Pat. No. 4,860,766, issued Aug. 29, 1989 and titled “Noninvasive Method for Measuring and Monitoring Intrapleural Pressure in Newborns,” discloses measuring intrapleural pressure of a newborn subject by detecting relative movement between adjacently-proximate cranial bones, preferably, using a surface inductive plethysmographic transducer secured on the subject's head across at least two adjacently-proximate cranial bones, and a method of calibrating such measurements by temporarily manually occluding the subject's nose or, if intubated, the endotracheal tube, to measure the airway pressure during such occlusion as the subject makes an inspiratory effort and comparing the measured pressure to the measured signal.
(10) The '109 patent: U.S. Pat. No. 4,834,109, issued May 30, 1989 and titled “Single Position Non-invasive Calibration Technique,” discloses an improved method for calibrating inductive plethysmographic measurement of respiration volume by totaling, during a period of breathing, a plurality of values of a parameter indicative of the relative amplitude, for each breath, of uncalibrated rib cage and abdomen signals, and by dividing the average variability of the me
Inman Dana Michael
Sackner Marvin A.
Hindenburg Max F.
Natnithithadha Navin
Pennie & Edmonds LLP
VivoMetrics, Inc.
LandOfFree
Systems and methods for ambulatory monitoring of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Systems and methods for ambulatory monitoring of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for ambulatory monitoring of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3031252