Systematic evolution of ligands by exponential enrichment:...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C536S023100, C536S025400

Reexamination Certificate

active

06465189

ABSTRACT:

FIELD OF THE INVENTION
Described herein is a method of combining nucleic acids with other functional units for generation of high affinity ligands. The method of this invention takes advantage of the method for identifying nucleic acid ligands referred to as SELEX. SELEX is an acronym for Systematic Evolution of Ligands by EXponential enrichment. The method presented herein is termed blended SELEX. Examples of functional units that may be coupled to nucleic acids include proteins, peptides, photoreactive groups, chemically-reactive groups, active site directed compounds, lipids, biotin, and fluorescent compounds. The blended nucleic acid ligands of the present invention consist of at least one nucleic acid ligand unit and at least one functional unit. The nucleic acid ligand unit(s) of the blended nucleic acid ligand serve in whole or in part as ligands to a given target. The functional unit(s) can be designed to serve in a large variety of functions. For example, the functional unit may independently or in combination with the nucleic acid ligand have specific affinity for the target, and in some cases may be a ligand to a different site of interaction with the target than the nucleic acid ligand. The functional unit(s) may be added which covalently react and couple the ligand to the target molecule, catalytic groups may be added to aid in the selection of protease or nuclease activity, and reporter molecules such as biotin- or fluorescence-tagged oligonucleotides may be added for use as diagnostic reagents.
BACKGROUND OF THE INVENTION
The SELEX method (hereinafter termed SELEX), was first described in U.S. application Ser. No 07/536,428, filed Jun. 11, 1990, entitled “Systematic Evolution of Ligands By Exponential Enrichment,” now abandoned. U.S. Pat. No. 5,475,096, entitled “Nucleic Acid Ligands,” and U.S. Pat. No. 5,270,163, entitled “Methods for Identifying Nucleic Acid Ligands,” further disclose the basic SELEX process. Each of these applications are herein specifically incorporated by reference. The SELEX process provides a class of products which are referred to as nucleic acid ligands, such ligands having, a unique sequence, and which have the property of binding specifically to a desired target compound or molecule. Each SELEX-identified nucleic acid ligand is a specific ligand of a given target compound or molecule. SELEX is based on the unique insight that nucleic acids have sufficient capacity for forming a variety of two- and three-dimensional structures and sufficient chemical versatility available within their monomers to act as ligands (form specific binding pairs) with virtually any chemical compound, whether monomeric or polymeric. Molecules of any size can serve as targets.
The SELEX method involves selection from a mixture of candidates and step-wise iterations of binding, partitioning, and amplification, using the same general selection theme, to achieve virtually any desired criterion of binding affinity and selectivity. Starting from a mixture of nucleic acids, preferably comprising a segment of randomized sequence, the method includes steps of contacting the mixture with the target under conditions favorable for binding, partitioning unbound nucleic acids from those nucleic acids which have bound to target molecules, dissociating the nucleic acid-target pairs, amplifying the nucleic acids dissociated from the nucleic acid-target pairs to yield a ligand-enriched mixture of nucleic acids, then reiterating the steps of binding, partitioning, dissociating and amplifying through as many cycles as desired. A variety of techniques can be used to partition members in the pool of nucleic acids that have a higher affinity to the target than the bulk of the nucleic acids in the mixture.
While not bound by theory, SELEX is based on the inventors' insight that within a nucleic acid mixture containing a large number of possible sequences and structures there is a wide range of binding affinities for a given target. A nucleic acid mixture comprising, for example, a 20 nucleotide randomized segment, can have 4
20
candidate possibilities. Those which have the higher affinity constants for the target are most likely to bind to the target. After partitioning, dissociation and amplification, a second nucleic acid mixture is generated, enriched for the higher binding affinity candidates. Additional rounds of selection progressively favor the best ligands until the resulting nucleic acid mixture is predominantly composed of only one or a few sequences. These can then be cloned, sequenced and individually tested for binding affinity as pure ligands.
Cycles of selection, partition and amplification are repeated until a desired goal is achieved. In the most general case, selection/partition/amplification is continued until no significant improvement in binding strength is achieved on repetition of the cycle. The method may be used to sample as many as about 10
18
different nucleic acid species. The nucleic acids of the test mixture preferably include a randomized sequence portion as well as conserved sequences necessary for efficient amplification. Nucleic acid sequence variants can be produced in a number of ways including synthesis of randomized nucleic acid sequences and size selection from randomly cleaved cellular nucleic acids. The variable sequence portion may contain fully or partially random sequence; it may also contain subportions of conserved sequence incorporated with randomized sequence. Sequence variation in test nucleic acids can be introduced or increased by mutagenesis before or during the selection/partition/amplification iterations.
For target molecules which are nucleic acid binding proteins, evolved SELEX ligands may be homologous to the natural ligand since the nucleic acid binding protein target has evolved naturally to present side-chain and/or main-chain atoms with the correct geometry to interact with nucleic acids. Non-nucleic acid binding proteins which have evolved to bind poly-anions such as sulfated glycans (e.g., heparin), or to bind phospholipids or phosphosugars, also have sites into which nucleic acids can fit and make contacts analogous with the natural ligands and/or substrates.
For certain target molecules where the natural ligand is not a poly-anion, it can be more difficult (but still likely with relatively more rounds of SELEX) to identify oligonucleotides that fit into the substrate or ligand site. For instance, the binding pocket of trypsin contains a carboxyl group which interacts during catalysis with a lysine or arginine residue on the substrate. An oligonucleotide may not fit into this specific catalytic site because it would not contain a positively charged counter ion. Basic SELEX evolution of oligonucleotide ligands to such a target molecule may result in ligands to a site(s) distant from the substrate site, since the probability of recovering ligands to the substrate site may be low.
The basic SELEX method may be modified to achieve specific objectives. For example, U.S. Pat. No. 5,707,796, entitled “Method for Selecting Nucleic Acids on the Basis of Structure,” describes the use of SELEX in conjunction with gel electrophoresis to select nucleic acid molecules with specific structural characteristics, such as bent DNA. U.S. Pat. No. 5,763,177, entitled “Photoselection of Nucleic Acid Ligands,” describes a SELEX based method for selecting nucleic acid ligands containing photoreactive groups capable of binding and/or photocrosslinking to and/or photoinactivating a target molecule. U.S. Pat. No. 5,580,737, entitled “High-Affinity Nucleic Acid Ligands That Discriminate Between Theophylline and Caffeine,” describes a method for identifying highly specific nucleic acid ligands able to discriminate between closely related molecules, termed “counter-SELEX”. U.S. patent application Ser. No. 08/143,564, filed Oct. 25, 1993, entitled “Systematic Evolution of Ligands by EXponential Enrichment: Solution SELEX,” now abandoned (See U.S. Pat. No. 5,567,588), describes a SELEX-based method which achieves highly efficient partitioning

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systematic evolution of ligands by exponential enrichment:... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systematic evolution of ligands by exponential enrichment:..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systematic evolution of ligands by exponential enrichment:... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2970574

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.