System to produce sugar from plant materials

Sugar – starch – and carbohydrates – Processes – Carbohydrate manufacture and refining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C127S048000, C127S050000, C127S052000

Reexamination Certificate

active

06656287

ABSTRACT:

The present invention relates to a process system for the production of sugar along with other products from sucrose containing juice obtained from plant material, such as, sugar cane, sugar beets, or sweet sorghum. The invention further relates to apparatus and methods to produce sucrose containing juice having a reduced amount of dissolved material. The invention further relates to the conversion of conventional sugar process systems to produce or to utilize such sucrose containing juices that have a reduce amount of dissolved materials.
I. BACKGROUND
Sucrose, C
12
H
22
O
11
, a disaccharide, is a condensation molecule that links one glucose monosaccharide and one fructose monosaccharide. Sucrose occurs naturally in many fruits and vegetables of the plant kingdom, such as sugarcane, sugar beets, sweet sorghum, sugar palms, or sugar maples. The amount of sucrose produced by plants can be dependent on the genetic strain, soil or fertilization factors, weather conditions during growth, incidence of plant disease, degree of maturity or the treatment between harvesting and processing, among many factors.
Sucrose may be concentrated in certain portions of the plant, for example, the stalks of the sugarcane plant or the sugar beet root. The entire plant, or a portion of the plant in which the sucrose is concentrated, may be harvested and the plant juices may be removed or extracted to obtain a juice containing a certain concentration of sucrose. Typically, the removal or extraction of juices from plant material involves milling, diffusion, pressing, or a combination thereof. Milling is one of the conventional methods for extracting juice from sugar cane stalks. The sugar cane stalks may be cut up into pieces having the desired size and then passed through rollers to squeeze out the juices. This process may be repeated several times down a series of mills to ensure that substantially all the sugar cane juice is removed.
Diffusion is considered to be the conventional method for extracting juice from the root of the sugar beet. Sugar beets may be sliced into thin strips called “cossettes” that may then be introduced into one end of a diffuser while a diffusion liquid, such as warm water, enters the other. When such counter current processing is used about 98 percent of the sucrose from the cossette or sugar beet material can be removed. The resulting sucrose containing liquid is often called “diffusion juice.” The cossettes or beet slices from the diffuser can still be very wet and the juice, which can be 88-92% water, associated with them can still hold some sucrose. The cossettes or beet slices may, therefore, be pressed in a screw press, or other type of press, to squeeze as much juice out of them as possible. This juice often referred to as “pulp press water” can have a pH value of about 5 and in some cases is returned to the diffuser. The resulting pulp may contain about 75% moisture. The addition to the press feed of cationic charged pressing aids can lower the pulp moisture content by about 1.5 to 2%. Sucrose from sugarcane stalks can also be removed by diffusion. One diffusion process for sugarcane involves a moving bed of finely prepared sugarcane pieces passed through the diffuser allowing the sucrose to be leached out of the sugarcane.
The diffusion process, the milling process, other processes that remove juice from plant material, or bring plant juice into aqueous solution, result in a juice containing sucrose, non-sucrose substances, and water. The nature and amount of the non-sucrose substances in the juice obtained by these processes can vary and may include all manner of plant derived substances and non-plant derived substances, including but not limited to: insoluble material, such as, plant fiber or soil particles; and soluble materials, such as, fertilizer, sucrose, saccharides other than sucrose, organic and inorganic non-sugars, organic acids, dissolved gases, proteins, inorganic acids, organic acids, phosphates, metal ions (for example, iron, aluminum, or magnesium ions), pectins, colored materials, saponins, waxes, fats, or gums, their associated or linked moieties, or derivatives thereof.
These non-sucrose substances are often highly colorized, thermally unstable, or otherwise interfere with certain processing steps or adversely impact the quality or quantity of the sugar product resulting from the purification process. It has been estimated that on average one pound of non-sucrose substances reduces the quantity of sugar product resulting from the purification process by one and one-half pounds. It may be desirable to have all or a portion of these non-sucrose substances separated from or removed from the juice resulting from the diffusion, milling, or other methods used to remove juice from the plant material. A good diffusion operation can eliminate 25-30% of entering impurities. Returned pulp or carbonation press water can reduce this level to 17-20%, however it is still economical due to: heat recovery, make up water saved, wastewater pollution reduced, sugar recovered.
Conventional process systems utilize the remaining plant material, or the juice(s) resulting from the diffusion, milling, or other methods used to remove juice from the plant material, such as those described by U.S. Pat. Nos. 6,051,075; 5,928,42; 5,480,490, each hereby incorporated by reference, or such as those described by “Sugar Technology, Beet and Cane Sugar Manufacture” by P. W. van der Poel et al. (1998); “Beet-Sugar Technology” edited by R. A. McGinnis, Third Edition (1982); or Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists by James C. P. Chen, Chung Chi Chou, 12th Edition (1993), each hereby incorporated by reference herein, to generate various types of: process juices; solids prepared from the remaining plant material or separated from such process juices during their clarification, purification or refining; sugar or sucrose containing juices; sugar or sucrose crystallized from such sugar or sucrose containing juices; mother liquors of such crystallization of sugar or sucrose, along with the various combinations, permutations, by products, or derivative products thereof, each having a level of impurities consistent with the process steps described herein or any portion thereof, or actually utilized in their production, or consistent with conventional standards for a type or kind of product including, but not limited to: animal feeds containing plant material from which juice has been removed such as exhausted beet cossettes, pulp, bagasse, or other solids or juices separated from process juices; power generated using plant material from which juice has been removed as a fuel to boil water to generate high pressure steam to drive turbine(s) in order to make electricity, or to generate low pressure steam for the process system, or to generate low grade heat; syrup ranging from pure sucrose solutions such as those sold to industrial users to treated syrups incorporating flavors and colors, or those incorporating some invert sugar to prevent crystallization of sucrose, for example, golden syrup; molasses obtained by removal of all or any part of the crystallizable sucrose or sugar, or products derived from molasses, one example being treacle; alcohol distilled from molasses; blanco directo or plantation sugars generated by sulfitation using sulfur dioxide (SO2) as a bleaching agent; juggeri or gur generated by boiling sucrose or sugar containing juices until essentially dry; juice sugar from melting refined white sugar or from syrup(s) which may be further decolorized; single-crystallization cane sugars often referred to as “unrefined sugar” in the United Kingdom or other parts of Europe, or referred to as “evaporated cane juice” in the North American natural foods industry to describe a free-flowing, single-crystallization cane sugar that is produced with a minimal degree of processing; milled cane; demerara; muscovado; rapedura; panela; turbina; raw sugar which can be 94-98 percent sucrose, the balance being molasses, ash, and other trace elements;

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System to produce sugar from plant materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System to produce sugar from plant materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System to produce sugar from plant materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3141899

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.