Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-08-03
2003-03-04
Tolin, Gerald (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C165S080400, C174S015100, C361S699000
Reexamination Certificate
active
06529376
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates, in general, to heat dissipation systems, and in particular, to a versatile and cost-effective system for dissipating heat generated by high speed central processing units and other high performance data processing componentry.
BACKGROUND OF THE INVENTION
The continual demand for enhanced data processing performance has resulted in numerous advancements in data processing technology and processes. The operational speed of data processing components, such as central processing units, has continually and steadily been increased over time to meet this demand. Data processing system designers have known for some time that as data processing system components are operated at higher speeds, they generate more heat-effectively becoming a heat source within the system. That increased heat can seriously degrade the performance of, and even damage, high performance data processing components. This phenomenon is especially true for semiconductor devices within data processing systems. Generation of and exposure to extreme heat during operation can cause semiconductor devices to malfunction or fail completely. In the Pentium IIII computer processor the problem has become so severe that its designer has integrated into its design “speed step technology” that actually reduces the processor speed by 50% or more due to the fact that its thermal output is to high for conventional methods of cooling. This poses a serious performance barrier as well as system reliability and integrity problem. Those designers are continually forced to make trade-offs balancing increased system performance against system reliability due to heat concerns.
Lately, such trade-offs have focused in large part on central processing units and other high speed processing components. Numerous advancements in processor technology have produced processing units that are capable of operation 10 to 70% higher speeds if proper cooling is utilized. Practically, however, systems designers have typically not been able to utilize the full potential of such devices due to the heating problems previously discussed. Instead, they have had to operate processing units at some fraction of their full potential speed—at the point where they choose to balance the performance and reliability issues. As advances in other data processing componentry present the same issues, similar trade-offs will also have to be made.
In the past, a number of attempts have been made to address and minimize heating problems and concerns. Most such approaches have focused on circulation and cooling of ambient air surrounding a processing unit providing an indirect and inefficient method of transferring heat away from high speed processing devices. Some of those approaches were quite elaborate and costly, such as operating data processing systems in specially constructed “Cold Rooms” with extreme operating cost due to high power consumption of air conditioning and setup cost. Typically, a room having raised floors was constructed to house high performance processing equipment. Elaborate ventilation, and in some cases cooling, systems were installed in the floor and ceiling to circulate a high volume of air through the room. Data processing equipment was typically then installed in open racks in the room for operation. Aside from the considerable cost and effort associated with constructing such rooms, their isolated and often remote nature made maintenance difficult and usage impractical. Furthermore, the benefits realized from these rooms was still limited by the inefficiency of the indirect (ambient) cooling scheme.
Other conventional approaches, while smaller in scale and somewhat more cost efficient than specially constructed rooms, still utilized the inefficient indirect cooling schemes. These approaches focused again on providing ventilation of ambient air around processing units—usually in smaller, more confined processing systems (e.g. personal computers). Examples of such approaches include providing simple ventilation holes or slots, or the installation of motorized fans, in processing system cabinets. Other approaches have attempted to provide fan-type assemblies mounted on, or in close proximity to, a central processing unit. Such approaches have realized nominal benefits, and often disproportionately increase system cost and complexity when compared with the benefits realized.
A few attempts at providing a more direct heat dissipation methodology have been made. Most such attempts involved highly elaborate multistage cooling and heating systems attempting to sink heat away from a data processing unit, and generally required numerous bulky electromechanical units and elaborate connections therebetween. Systems utilizing such approaches typically faced a number of collateral system and performance concerns resulting from the inclusion of such systems, such as electromagnetic field interference and condensation problems when refrigeration is employed. Furthermore, the considerable unit costs associated with producing and implementing such systems was typically prohibitive for use in high volume consumer applications—especially where additional modifications were added to address the collateral system effects previously referenced. The bulk and complexity of these systems commonly limited their utilization to server and larger computer platforms; they were not readily scalable for use in smaller, hand held consumer applications.
With processor temperature approaching 200 deg. F. in some cases, an efficient new method is needed to cool high performance processors. Therefore, a versatile and readily scalable system for dissipating heat generated by processing componentry in a highly efficient and cost-effective manner is now needed; providing full realization of high-speed processing unit performance and improved system reliability while overcoming the aforementioned limitations of conventional methods.
SUMMARY OF THE INVENTION
In the present invention, a heat transfer unit is directly engaged with the surface of a processing unit. A liquid coolant is circulated through the heat transfer unit by a transport system which delivers cooled liquid from, and returns heated liquid to, an external heat exchange system; providing continuous and highly efficient direct heat dissipation from the processing unit in a readily adaptable manner.
The present invention provides a heat dissipation system including a heat transfer unit matably engaged with a data processing unit and adapted to transfer heat from the data processing unit to a fluid, a fluidic transport system coupled to the heat transfer unit and adapted to provide cooled fluid to, and retrieve heated fluid from, the heat transfer unit, a fluid reservoir coupled to the fluidic transport system, adapted to store cooled fluid and to deliver cooled fluid to the fluidic transport system, and a heat exchange unit coupled to the fluidic transport system and to the fluid reservoir, adapted to receive heated fluid from the fluidic transport system, to cool the fluid, and to deliver the cooled fluid to the fluid reservoir.
The present invention further provides a CPU cooling system comprising a heat sink device adjoined with one or more surfaces of the CPU and adapted to transfer heat from the CPU to a liquid, a first transport conduit coupled to the heat sink device and adapted to provide cooled liquid to the heat sink device, a second transport conduit coupled to the heat sink device and adapted to retrieve heated liquid from the heat sink device, a reservoir coupled to the first transport conduit and adapted to store cooled liquid and to deliver cooled liquid to the first transport conduit, and a heat exchange unit coupled to the second transport conduit and to the reservoir, adapted to receive heated liquid from the second transport conduit, to cool the liquid, and to deliver the cooled liquid to the reservoir.
The present invention also provides a fluidic impeller comprising a base plate, a shaft coupled normally to the base plate by a hub, a plura
Kelly Bauersfeld Lowry & Kelley LLP
Tolin Gerald
LandOfFree
System processor heat dissipation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System processor heat dissipation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System processor heat dissipation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3077295