Optics: measuring and testing – Lens or reflective image former testing
Reexamination Certificate
2000-01-20
2002-04-30
Font, Frank G. (Department: 2877)
Optics: measuring and testing
Lens or reflective image former testing
C356S127000, C356S601000, C033S028000, C033S200000, C451S010000, C451S011000, C451S005000, C359S200300
Reexamination Certificate
active
06381012
ABSTRACT:
REFERENCE TO PENDING APPLICATIONS
This application is not related to any pending applications.
REFERENCE TO MICROFICHE APPENDIX
This application is not referenced in any microfiche appendix.
TECHNICAL FIELD OF THE INVENTION
The invention relates in general to optical lens processing and more specifically, to a system, method and article of manufacture to determine and communicate optical lens sizing and prescription information.
BACKGROUND OF THE INVENTION
Subject matter related to optical lens sizing is well known in the art. For example:
U.S. Pat. No. 1,790,572 issued on Jan. 27, 1931 to Lucian W. Bugbee Jr. discloses a lens inspecting and layout device.
U.S. Pat. No. 2,190,582 issued on Feb. 13, 1940 to Fayette E. Wolf discloses a template for edging lenses.
U.S. Pat. No. 2,546,329 issued on Mar. 27, 1951 to Henry C. Barile discloses a lens inspecting and layout device.
U.S. Pat. No. 3,313,031 issued on Apr. 11, 1967 to George L. Lowe discloses an ophthalmic lens former.
U.S. Pat. No. 4,361,830 issued on Nov. 30, 1982 to Kazuhiro Honmaet al discloses a device for displaying feature of contour images wherein the x-y coordinates are determined of a multiplicity of points set at very small intervals of a fixed value on a contour line, the coordinates of a selected number of points on either side of one (central point) of the aforementioned multiplicity of points are averaged, the two points corresponding to the two sets of averaged coordinates are connected by a straight line, a perpendicular line is drawn to this straight line from the aforementioned central point, and the distance from the central point to the foot of the perpendicular line on the straight line is calculated. This distance varies with the change in the shape of the contour line. By finding this distance with respect to each of the points on the contour line and displaying the distances found, there can be obtained a figure indicative of features of the shape of the contour image.
U.S. Pat. No. 4,656,590 issued on Apr. 7, 1987 to Ronald Ace discloses a system for computerizing eyeglass geometrical frame pattern records at a central location for access by eyeglass retailers or wholesalers is disclosed. The pattern records are stored in a central computer in the form of instructions for a remote pattern cutting machine. The instructions define the shape of the eyeglass frame in quasi-polar coordinates, either using the frame's geometrical “box” center as the origin or using the optical center of the lens as the origin, the computer providing the desired conversion between the two pattern centers. When an optician has a call for edging a lens for a particular frame, the optician obtains the edge shape data from the central computer by specifying the frame and, if desired, by specifying the decent ration of the optical center from the frame geometric center. The central computer may convert its frame shape data from the geometric center to the optical center, if desired, and then provides the necessary data for cutting the pattern. Data is transmitted to and is stored at a remote pattern cutter which then utilizes the data to cut a full-size pattern from an inexpensive plastic workpiece, or pattern blank. Then the optician may compare the pattern with the frame to make sure that it is correct before edge-grinding the lens to the shape of the pattern, thereby greatly simplifying the present labor-intensive process of preparing lenses for frames.
U.S. Pat. No. 4,817,024 issued on Mar. 28, 1989 to Tsuyoshi Saigoh discloses a spectacle-frame shape data producing method in which a spline interpolation function is used to digitize the shape M of a spectacle frame to provide spectacle-frame shape data, and the shape M of the spectacle frame is obtained by a lens maker's factory to produce spectacle lenses having prescribed values and an optimum thickness conforming to the spectacle frame.
U.S. Pat. No. 5,428,448 issued on Jun. 27, 1995 to Pablo Albert-Garcia discloses a method and apparatus for determining the size and shape to which a finished lens used to make an eyeglass lens is to be cut. Coordinates which define the outer perimeter of a lens are determined by illuminating either an eyeglass frame or a lens. An image of the shadow of the frame or lens is captured by an imaging device. A first linear polarizing filter is positioned optically between a light source and the membrane. A second linear polarizing filter, oriented at 180° degrees from the first filter, is placed optically between the membrane and the camera. Thus, the first and second polarizing filters allow a high definition image to be attained for substantially transparent plastic. A general purpose computer: (1) identifies the edges of the image so as to define the perimeter; (2) orients the image by identifying an orientation line placed upon a lens, if the image is of a lens which is not within a frame, and (3) measures the distance between lenses if an eyeglass frame is being measured. If an eyeglass frame is being measured, then a depth gauge indicator is used to measure the depth of a groove in the frame into which a lens is recessed when mounted in the eyeglass frame. Once the coordinates of the lens are determined, they may be verified by comparison with the frames or lens from which they were derived. Further, the coordinates of the outer perimeter of the edged lens may be determined to verify the accuracy of the operation.
U.S. Pat. No. 5,485,399 issued on Jan. 16, 1996 to Tsuyoshi Saigo et al discloses a spectacle lens supply method for a system which includes a terminal installed at a lens orderer side and at least a computing device installed at a lens processor side and connected to the terminal via a communication line, for supplying spectacle lenses. In the lens supply method, the terminal transmits processing condition data including at least one of lens information, frame information, prescription values, layout information and processing information to the computing device, and the computing device calculates a desired lens shape including a bevel figure based on the received processing condition data, creates accept/reject information as to whether a lens process including beveling is possible or not, based on the result of the calculation, and transmits the accept/reject information to the terminal, which information is displayed at the terminal to permit the lens orderer to learn whether the lens process including beveling is possible or not.
U.S. Pat. No. 5,673,490 issued on Oct. 7, 1997 to Kerry Jean Hill discloses an alignment mechanism and method for using the same in which the alignment mechanism includes a sheet of translucent (including transparent) material with a plurality of horizontal and vertical intersecting traces positioned to form a grid. In a preferred embodiment, the sheet of translucent material is made of static cling vinyl to allow the sheet to hold itself to glass and other smooth surfaces. The sheet of material can also include a centered X and Y axes to enable the user to determine the center of the sheet—thereby allowing the user to appropriately position art works relative to one another without relying on unaided perception.
U.S. Pat. No. 5,926,247 issued on Jul. 20, 1999 to Toshio Kimura discloses a method of manufacturing spectacles by obtaining accurate frame shape information without performing a frame shape measurement in the spectacle store. In this method, frame shape information is first obtained after a spectacle frame is manufactured in a factory. Moreover, frame-related information, which includes the obtained frame shape information, or readout information, according to which this frame-related information is read out, is preliminarily added to the spectacle frame. Thereafter, in a spectacle store, the frame-related information is read from the spectacle itself or from a storage unit or the like by using the information added to the spectacle frame as a key. Thus, frame shape information, which is needed when obtaining lens processing information, is obtained therein. The present i
Font Frank G.
Head Johnson & Kachigian
Nguyen Sang H.
LandOfFree
System, method and article of manufacture to determine and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System, method and article of manufacture to determine and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System, method and article of manufacture to determine and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2823306